Community Sourced, Data-Driven Improvements to Open, Adaptive Courseware

Region Orange County
Discipline Chemistry, Math, Engineering
Grant Amount Up to $1,300,000
Institutions Santa Ana College, CSU Fullerton, UC Berkeley
Co-Principal Investigators Crystal Jenkins (SAC), Nina Robson (CSU Fullerton), Zachary Pardos (UC Berkeley), Lauren Herckis (Carnegie Mellon University)

Abstract

“Community Sourced, Data-Driven Improvements to Open, Adaptive Courseware” will improve outcomes for STEM learners in targeted courses by deploying and improving open, adaptive courseware. This project builds on Open Learning Initiative (OLI) and Lumen Learning courseware that has been demonstrably effective in closing gaps and improving performance for underrepresented learners in STEM.

The project has two main thrusts: effectiveness and barriers. Effectiveness research will investigate the impact of multi-sourced data driven improvement on outcomes for targeted STEM learners, and barriers research will investigate the impact of this approach on faculty attitudes and culture. Improvements will be guided by analytic tools developed for this project that provide faculty, student, and crowdsourced feedback and participation. This approach ensures that student voices will play a central role in identifying areas of difficulty, evaluating materials and improvements, and recognizing student experience. Barriers research expands upon established protocols from Carnegie Mellon University, including embedding a cultural anthropologist who will use a mixed-methods approach to better understand barriers and facilitators for effective adoption of technology enhanced learning (TEL) innovations. This research complements and informs effectiveness research, employing a research-based approach to integrate these new tools into existing educational contexts.

The project will produce:

  • Open, adaptive STEM courseware that has been improved using data to target underrepresented learners.
  • Open tools to support the iterative, data-driven improvement of open courseware, via contributions from students, instructors, and broader crowdsourced mechanisms.
  • A clearer understanding of the ways that these data-driven improvement approaches can support or hinder learning, particularly for vulnerable learners.
  • Insights into the barriers and facilitators for sustained adoption and effective use of these TEL innovations