November 1, 2019

Mr. Shannon Hatcher Air Pollution Specialist California Air Resources Board 1001 I Street P.O. Box 2815 Sacramento, CA 95812 - 2815

> Re: Inglewood Basketball and Entertainment Center Project State Clearinghouse No. 2018021056 Greenhouse Gas Emissions Offset Commitment Approach

Dear Mr. Hatcher,

Murphy's Bowl LLC (the "Applicant") submitted an application seeking certification of the Inglewood Basketball and Entertainment Center project (the "Project") for streamlining of judicial review under the California Environmental Quality Act pursuant to AB 987 on January 2, 2019, and submitted supplemental materials on June 12, 2019 (collectively, the "AB 987 Application"). Attachment F to the AB 987 Application is a binding and enforceable agreement between the Applicant and the City of Inglewood (the "City") that all environmental measures required to certify the Project under AB 987, including the commitments herein, shall be imposed by the City as conditions of approval that will be monitored and fully enforceable by the City for the life of the obligation.

This letter is provided to reaffirm the Applicant's commitment and to provide reassurance to California Air Resources Board ("CARB") that (1) 100% of the GHG emissions associated with the Project will be reduced such that the project results in no net additional emissions (the "Net Zero Standard"), and (2) not less than 50% of the GHG emissions reductions will be achieved through local, direct measures, and not more than 50% of the GHG emissions reductions will be achieved through the purchase of GHG offset credits. This letter is a revision of our earlier draft and reflects subsequent discussions and joint agreement, subject to CARB's review of the calculations included in this letter and its accompanying materials.

Thus, this reiterates the AB 987 Application's statement of compliance with all the directives of Public Resources Code Section 21168.6.8, including without limitation those requiring that the Project demonstrate that (1) it will meet the Net Zero Standard, (2) not less than 50% of the GHG emissions reductions necessary to achieve that requirement shall be from local, direct GHG emissions reductions measures, and (3) it will include a transportation demand management ("TDM") program that, upon full implementation, will achieve and maintain a 15% reduction in the number of vehicle trips, collectively, by attendees, employees, visitors, and customers as compared to operations absent the TDM program.

Executive Summary

The Applicant understands that CARB staff has been reviewing the projected GHG emissions in the AB 987 Application and will confirm the GHG emission factors used to estimate construction and operational emissions. Although the AB 987 Application's Project GHG emissions calculations are supported by substantial evidence and reasonably rely upon expert opinion, including detailed analyses based on reasonable projections of the number of market-shifted versus net new non-NBA events at the Project Arena and associated backfill of vacated LA Clippers event days at the Staples Center, CARB has requested that the Applicant provide calculations and an emissions reduction methodology for a hypothetical 100% backfill GHG emissions scenario that would assume that all vacated LA Clippers and market-shifted non-NBA events at the Project Arena would be replaced by other events at Staples Center and other existing venues in the Los Angeles region.

This commitment letter includes, as Exhibit A, a calculation of the additional GHG emissions that would result from that hypothetical scenario, and includes commitments to (1) achieve all of the total GHG emissions reductions, including the 50% local direct emissions reduction measures, to achieve the Net Zero Standard based upon the methodology and calculations in the AB 987 Application; (2) purchase additional carbon offset credits to achieve 50% of the additional GHG emissions reductions that would be necessary under the hypothetical 100% backfill GHG emissions scenario; (3) implement several specific additional local direct measures to achieve substantial emissions reductions above those necessary under the AB 987 Application's calculations which, together with the additional carbon offset credits identified above, would achieve approximately 95% of the emissions reductions that would be necessary under the hypothetical 100% backfill GHG emissions scenario, and (4) if any of the additional 5% of emissions reductions under the hypothetical scenario are shown to be necessary under the verification process described below, to identify and implement the additional local direct measures that would be necessary to achieve those reductions.

In order to provide further assurance to CARB that the Net Zero Standard and local direct GHG emissions reduction measures requirement of AB 987 will be met, the Applicant has also committed to an annual verification process under which the Applicant would submit to the City, with a copy provided to CARB, annual verification reports. These reports would (1) determine the actual number of incremental events in the regional event market that are directly or indirectly attributable to the Project Arena and the related GHG emissions, (2) report on the implementation and efficiency of local direct emissions reduction measures over the previous year, and (3) identify any new local direct measures to be implemented beginning in the following year to account for any potential shortfall in emissions reductions.

If an annual verification report shows that emissions reductions achieved through emissions reductions measures implemented in the previous year exceed the amount of actual GHG emissions for that year as calculated in the report, such excess emissions reductions shall be credited toward future years and such credit shall be reflected in subsequent GHG Verification Reports.

AB 987 Commitments

The AB 987 Application includes the Applicant's commitment to implement the following local, direct measures to mitigate 50% of the GHG emissions associated with the Project, as described and calculated in the AB 987 Application, by the end of the first NBA regular season or June of the first NBA regular season, whichever is later, during which an NBA team has played at the Project Arena, with annual reporting thereafter:

- (1) LEED Gold certification;
- (2) Implementation of the IBEC TDM Program; and
- (3) To the extent necessary to achieve the requirement that 50% of the GHG emissions reductions be from local, direct measures, the Applicant has also committed to one or more additional local, direct measures potentially including, but not limited to:
- (A) Additional renewable energy production through installation of additional photovoltaic systems as carports on a third parking structure; or
- (B) Purchase of electricity for onsite consumption through the Southern California Edison ("SCE") Green Rate which facilitates SCE's purchase of renewable energy to meet the needs of Green rate participants from solar renewable developers within the SCE service territory, SCE's Community Renewables Program, similar opportunities for renewable electricity that could emerge in the future or, if available after approval by applicable regulatory agencies, on-site use of renewable natural gas ("Renewable Energy").

As provided in Public Resources Code Section 21168.6.8 and set forth in the AB 987 Application, after satisfaction of the 50% local, direct standard, the Applicant will achieve the additional GHG emission reductions necessary to achieve the remaining reductions required under the AB 987 Application's calculations through the following: (1) the remaining LEED Gold measures in excess of 50% that under AB 987 would not be considered local, direct measures; (2) the purchase of offset credits; and/or (3) co-benefits from emission reduction measures for nitrogen oxides (NO_x) and particulate matter with aerodynamic diameter less than 2.5 microns (PM_{2.5}).

The AB 987 Application's Project GHG emissions calculations are supported by substantial evidence, including detailed analyses based on reasonable projections of the number of market-shifted versus net new events at the Project Arena and associated backfill of vacated event days at the Staples Center. These analyses, included as Exhibits 1 and 2 to Attachment 3 of the June 12, 2019, supplemental submittal, were prepared by CSL International, experts in the sports, entertainment, visitor, and convention industries.

Notwithstanding that clarity, at CARB's request, Exhibit A to this commitment letter provides calculations and an emissions reduction methodology for a hypothetical 100% backfill GHG emissions scenario that assumes that 100% of the LA Clippers games and market-shifted non-NBA events moving from existing venues described in the analysis included as Attachment 3, Exhibit 2 to the June 12, 2019, supplemental submittal (the "Existing Venues") to the Project Arena are replaced (*i.e.*, backfilled) with other non-NBA events at the Existing Venues, even though there is no evidence to support any possibility of such a scenario occurring.

Under that hypothetical 100% backfill scenario, the Project would result in an additional 146,052 MT CO₂e of GHG emissions above the total calculated in the AB 987 Application, for a total of 304,683 MT C₂Oe over the 30-year operational life of the Project. The Applicant commits to purchasing sufficient carbon offset credits accounting for a reduction of 73,026 MT CO₂e of GHG emissions (*i.e.*, 50% of the additional GHG emissions reductions that would be necessary under that hypothetical 100% backfill GHG emissions scenario) prior to the issuance of the final certificate of occupancy for the Project Arena.

The Applicant also commits to the following on- and off-site GHG emissions reduction measures (estimated to achieve 58,227 MT CO₂e of emissions reductions), which shall be imposed by the City of Inglewood as Project conditions of approval:

On-Site Local Direct Measures

- *IBEC Smart Parking System.* The Applicant shall install systems in the on-site parking structures serving the Project to reduce vehicle circulation and idle time within the structures by more efficiently directing vehicles to available parking spaces.
- *IBEC On-Site Electric Vehicle Charging Stations*. The Applicant shall install a minimum of three hundred and thirty (330) electric vehicle charging stations (EVCS) within the three proposed on-site parking structures serving the Project for use by employees, visitors, event attendees, and the public.
- *IBEC Zero Waste Program*. The Applicant shall implement a waste and diversion program for operations of the Project, with the exception of the hotel, with a goal of reducing landfill waste to zero. Effectiveness of the program shall be monitored annually through the U.S. Environmental Protection Agency's WasteWise program or a similar annual reporting system.
- Renewable Energy. The Applicant shall reduce GHG emissions associated with energy demand of the Project Arena that exceeds on-site energy generation capacity by using Renewable Energy during Project operations for a period sufficient to achieve GHG emission reductions equal to approximately 2.5% of the total estimate of GHG emissions that could occur in the hypothetical 100% backfill emissions scenario.

Off-Site Local Direct Measures

- City of Inglewood Municipal Fleet Vehicles ZEV Replacement. The Applicant shall enter into an agreement with the City of Inglewood to cover 100% of the cost of replacement of ten (10) municipal fleet vehicles that produce GHG emissions with Zero-Emissions Vehicles (ZEVs) and related infrastructure (e.g., EVCS) for those vehicles prior to the issuance of grading permits.
- ZEV Replacement of Transit Vehicles Operating Within the City of Inglewood. The Applicant shall enter into an agreement with the City of Inglewood to cover 100% of the cost of replacement of two (2) transit vehicles that operate within the City of Inglewood

that produce GHG emissions with ZEVs and related infrastructure (e.g., EVCS) for those vehicles prior to issuance of grading permits.

- Local EV Charging Stations in the City of Inglewood. Prior to the issuance of grading permits, the Applicant shall enter into agreements to install twenty (20) EVCS at locations in the City of Inglewood. These EVCS will be available for use by the public for charging electric vehicles.
- City of Inglewood Tree Planting Program. Prior to the issuance of grading permits, the Applicant shall develop or enter into partnerships with existing organizations to develop a program to plant one thousand (1,000 trees) within the City of Inglewood.

The Applicant shall implement all on-site local, direct measures identified above by the end of the first NBA regular season or June of the first NBA regular season, whichever is later, during which an NBA team has played at the Project Arena. All off-site, local, direct measures identified above must be in excess of any regulatory requirement or any previously planned action by the City of Inglewood that would have occurred otherwise.

The Applicant also has committed to a condition of approval requiring a verification process to confirm that (1) 100% of the actual GHG emissions resulting from the net new events at the Project Arena will be calculated and reduced such that the Net Zero Standard will be met, and (2) the 50% local, direct GHG reduction requirement will be met. This condition of approval will require the Applicant to verify the actual number and attendance of net new versus market shifted events and, if necessary, implement sufficient additional GHG emissions reduction measures, as described below, to ensure compliance with Public Resources Code Section 21168.6.8(b)(5).

The verification process will be conducted (using the same methodology as set forth in the AB 987 Application, or another approach proposed by the Applicant and deemed acceptable by the City of Inglewood and CARB staff) after each year that the Project Arena is operational over the life of the building, as follows:

- Commencing with the first quarter after the first full year of Project Arena operations and annually thereafter, the Applicant shall prepare and submit GHG Verification Reports to the City with a copy provided concurrently to CARB. Our understanding is that CARB may seek to provide input to the City.
- The initial GHG Verification Report shall determine the growth rate of events at the Existing Venues based upon data from 10 years (2014-2023) before the Project Arena becomes operational (the "Growth Rate"). Based on the Growth Rate, the initial GHG Verification Report shall determine the number and attendance of events that would likely have occurred at the Existing Venues without the Project in 2024-2033 ("Without Project Events").
- The GHG Verification Reports shall monitor and report the actual number and attendance of events that occur at the Project Arena and the Existing Venues between 2024-2033, as applicable ("Actual Events"). The annual GHG Verification Reports shall calculate the

difference between the number and attendance of Actual Events and Without Project Events for each year of operations to date, which difference represents the Project Arena's actual incremental effect on the number and attendance of events in the regional market, *i.e.*, at the Project Arena and Existing Venues ("Incremental Events"). The GHG Verification Reports shall then calculate the total incremental GHG emissions attributable to the Project Arena based upon the Incremental Events.

- The Project Arena's incremental effect on the number of events in the regional market is likely to stabilize after the first several years of Project operations, and in later years it is more likely that changes in the regional market for events could occur due to intervening, unrelated causes, such as the closure of an Existing Venue or the opening of new event venues in the region. For those reasons, the calculations of the number of Incremental Events in the GHG Verification Reports for any year after 2033 shall be based upon the number of Incremental Events reported for 2033, or the average number of Incremental Events reported for 2029-2033, whichever is higher.
- Each GHG Verification Report shall include verification that the GHG emissions reduction measures required to achieve the Net Zero Standard and 50% local, direct standards have been implemented, including local, direct measures identified in (a) the AB 987 Application, (b) this letter as additional commitments, and (c) previous GHG Verification Reports. Each GHG Verification Report shall identify the specific measures or strategies implemented and provide a calculation of the GHG emissions reductions achieved.
- Recognizing that the point of the GHG Verification Reports is to provide additional verification of the AB 987 Application's estimates of the GHG emissions from the Project and backfill events at other existing venues resulting from the Project, including from the Incremental Events that would occur, annual reporting of events in the GHG Verification Reports shall be adjusted to reflect or evaluate anomalies that could distort the accurate reporting of net new events attributable to the Project Arena such as the 2028 Olympics and related events, changes to the number or schedule of sports teams using Existing Venues for home games, closure of or major renovations to Existing Venues, or similar circumstances. For example:
 - o 2028 Olympic events and related events shall be subtracted from the total of Actual Events.
 - Home games of existing or future sports teams at Existing Venues shall not be included in the totals of Without Project Events, Actual Events, or Incremental Events.
 - o If an Existing Venue closes, the number of Without Project Events shall be adjusted to subtract the number of events attributable to that Existing Venue.
 - o If an Existing Venue undergoes major renovations, the number of Without Project Events attributable to that Existing Venue shall be adjusted to reflect the

percentage of time during the year covered by the GHG Verification Report during which it was unavailable to host events.

• The GHG Verification Reports shall also include adjustments for any differences after buildout in the square footage of the Project's ancillary uses from the AB 987's Application's assumptions.

If any GHG Verification Report concludes that either (1) the total GHG emissions associated with the Project exceeds the amount addressed by the GHG emission reduction measures committed to in the AB 987 Application and the above additional emissions reduction commitments (*i.e.*, exceeds 289,120 MT CO₂e of GHG emissions), or (2) GHG emissions reductions expected to be achieved from local, direct measures are below 50% of the total GHG emissions reductions necessary, the Applicant shall achieve additional GHG emissions reductions as necessary to meet the Net Zero Standard and/or the 50% local, direct reduction requirement of AB 987 ("Additional GHG Emissions Reductions"), as follows:

- Any Additional GHG Emissions Reductions (up to the remaining 15,563 MT CO₂e that would be necessary under the hypothetical 100% backfill scenario) shall be achieved by not less than 50% local, direct GHG emissions reduction measures, which may include, but are not limited to, one or more of the following: energy audits and improvements for local buildings; and/or the purchase and use of Renewable Energy to meet on-site energy demands.
- The Applicant shall implement any additional local, direct measures necessary to achieve any Additional GHG Emissions Reductions within one year after the submittal of such GHG Verification Report.

If any GHG Verification Report concludes that the emissions reductions commitments described above are sufficient to achieve the Net Zero Standard and the 50% local, direct reduction requirement of AB 987, no Additional GHG Emissions Reductions shall be required to be identified in the GHG Verification Report or implemented. Any amount of GHG emissions reductions achieved that exceed the amount required to meet the Net Zero Standard and the 50% local, direct reduction requirement shall be credited toward future years and such credit shall be reflected in subsequent GHG Verification Reports. For example, the amount of renewable energy purchased as local, direct measures could be adjusted downward accordingly in future years, or such credit could be applied toward any shortfalls in achieving emissions reductions identified in subsequent verification reports.

With respect to carbon offset credits, the Applicant will, to the extent feasible, place the highest priority on the purchase of offset credits that produce emission reduction within the City or the boundaries of the South Coast Air Quality Management District. Carbon offset credits will be verified by a third party accredited by ARB, such as the American Carbon Registry, Climate Action Reserve, and Verra Carbon Standard. Carbon offset credits shall be purchased at a net present value although the contracts could propose acquiring the credits in advance of the emission-generating activities to be offset.

Contracts to purchase carbon offset credits for construction emissions will be entered into prior to the issuance of grading permits, and contracts to purchase carbon offset credits for operational emissions will be entered into prior to the issuance of the final certificate of occupancy for the Project Arena. Copies of the contract(s) shall promptly be provided to ARB, the Governor's office, and the City of Inglewood to verify that construction and operational emissions have been offset. Such contracts shall evidence the purchase of carbon credits in an amount sufficient to offset the remaining (after the GHG emissions reductions achieved through local, direct measures, LEED Gold measures, and co-benefits of NOx and PM2.5 emissions reduction measures) operational emissions.

Sincerely,

Murphy's Bowl LLC a Delaware limited liability company

Its: Manager

Exhibit A

At CARB's request, we are providing the following hypothetical example of a 100% backfill GHG emissions scenario over a 30-year operational period that assumes that 100% of the LA Clippers games and market-shifted non-NBA events moving from Existing Venues to the Project Arena are replaced (*i.e.*, backfilled) with other non-NBA events at the Existing Venues. There is no evidence to support the possibility that this hypothetical 100% backfill scenario could occur.

As shown in Table 1 below, total net new direct Project emissions from construction and operation and indirect Project emissions that could result from 100% backfill in this hypothetical 100% backfill GHG emissions scenario are estimated to be 304,683 MT C₂Oe over the 30-year operational life of the Project.

Table 1. Hypothetical 100% Backfill Emissions Scenario Net New Emissions

Year	IBEC Net New Emissions ^a [MT CO ₂ e]	Additional Emissions for Hypothetical 100% Backfill Emissions Scenario ^b (MT CO ₂ e)	Net Emissions Hypothetical 100% Backfill Emissions Scenario ^c (MT CO ₂ e)
2021	2,625	-	2,625
2022	7,164	-	7,164
2023	6,228	_	6,228
2024	6,398	3,437	9,835
2025	10,852	6,936	17,788
2026	10,177	6,687	16,864
2027	9,572	6,457	16,029
2028	9,027	6,241	15,268
2029	8,533	6,038	14,571
2030	8,084	5,847	13,931
2031	7,505	5,674	13,179
2032	6,933	5,501	12,434
2033	6,395	5,338	11,733
2034	5,889	5,183	11,072
2035	5,413	5,035	10,448
2036	4,965	4,893	9,858
2037	4,542	4,759	9,301
2038	4,142	4,629	8,771
2039	3,760	4,505	8,265
2040	3,395	4,384	7,779
2041	3,044	4,268	7,312
2042	2,704	4,154	6,858
2043	2,374	4,042	6,416
2044	2,051	3,932	5,983
2045	1,733	3,823	5,556
2046	1,715	3,818	5,533
2047	1,700	3,814	5,514
2048	1,688	3,811	5,499
2049	1,678	3,809	5,487
2050	1,669	3,807	5,476
2051	1,669	3,807	5,476
2052	1,669	3,807	5,476
2053	1,669	3,807	5,476
2054	1,669	3,807	5,476
TOTAL	158,631	146,052	304,683

Notes: Totals may not add due to rounding

^a IBEC Project AB 987 Application, June 12, 2019, Supplemental Materials, Attachment 3: IBEC Project Greenhouse Gas Analysis Supplemental Technical Memorandum, Table 10. Net new IBEC Project emissions calculations include backfill of existing the LA Clippers offices and seven vacated LA Clippers event days at Staples Center.

^b Additional Emissions include backfill of all additional vacated LA Clippers event days at Staples Center (40) and backfill of all market-shifted events (135).

^c Net Emissions Hypothetical 100% Backfill Emissions Scenario includes backfill of existing LA Clippers offices and all vacated LA Clippers event days at Staples Center (47) and all market-shifted events (135). See Attachment 1: IBEC Project Calculation of Net Emissions – Hypothetical 100% Backfill GHG Emissions Scenario.

Under this hypothetical 100% backfill emissions scenario, the GHG emission reductions that would be required for the Project to achieve the Net Zero Standard and 50% local, direct requirement under AB 987 would increase, as shown in Table 2 below:

Table 2. Hypothetical 100% Backfill Emissions Scenario and AB 987 Emissions Reduction Requirements

Emissions Conditions and Reductions	Emissions Estimates (MT CO ₂ e)	Percent of Emissions
IBEC Project Total Net New Emissions	158,631 ^a	100%
GHG Emissions Reductions from Local, Direct Measures for IBEC Project Net New Emissions	79,316ª	50%
GHG Emissions Reductions from Offset Credits for IBEC Project Net New Emissions	79,315 ª	50%
Additional Net New Emissions, Hypothetical 100% Backfill Emissions Scenario	146,052	100%
GHG Emissions Reductions from Local, Direct Measures for Additional Hypothetical 100% Backfill Emissions Scenario Emissions	73,026	50%
GHG Emissions Reductions from Offset Credits for Additional Hypothetical 100% Backfill Emissions Scenario Emissions	73,026	50%
Total Net New Emissions, Hypothetical 100% Backfill Emissions Scenario	304,683	100%
GHG Emissions Reductions from Local, Direct Measures for Total Net New Emissions, Hypothetical 100% Backfill Emissions Scenario	152,342	50%
GHG Emissions Reductions from Offset Credits for Total Net New Emissions, Hypothetical 100% Backfill Emissions Scenario	152,341	50%

Notes: Totals may not add due to rounding

The total 304,683 MT CO₂e of net new GHG emissions that could occur in the hypothetical 100% backfill emissions scenario represents an increase of 146,052 MT CO₂e of GHG emissions above the total net new emissions of 158,631 MT CO₂e estimated in the AB 987 Application. In

^a IBEC Project AB 987 Application, June 12, 2019, Supplemental Materials, Attachment 3: IBEC Project Greenhouse Gas Analysis Supplemental Technical Memorandum, Table 16

accordance with the requirements of AB 987, this would require an additional 73,026 MT CO₂e of GHG emissions reductions to be achieved through local, direct measures and additional reductions of 73,026 MT CO₂e to be achieved through carbon offset credits.

The following is a set of local, direct measures that either the Applicant has already committed to implement as set forth in the commitment letter accompanied by this Exhibit to achieve 58,227 MT CO₂e of the additional GHG emissions reductions from local, direct measures on-site and within the City of Inglewood and neighboring communities that would be necessary under that hypothetical, 100% backfill GHG emissions scenario, and a quantification of the GHG emissions reductions that each measure would achieve:

On-Site Local Direct Reduction Measures

- **Smart Parking**: Design and integrate a smart parking system to reduce idling time in the three parking structures included in the Project with a total capacity of 4,125 self-park spaces, reducing GHG and other mobile emissions on-site. (Estimated GHG emissions reductions of 1,480 MT CO₂e over 30 years).
- On-Site Electric Vehicle Charging: Install a minimum 330 electric vehicle charging stations (EVCS) within the three parking structures serving the Project. (Estimated GHG emissions reductions of 13,918 MT CO₂e over 30 years).
- **Zero Waste Program**: Implement a waste and diversion program for operations of the Project, with the exception of the hotel, with a goal of reducing landfill waste to zero. Effectiveness of the program shall be monitored annually through the U.S. EPA's WasteWise program or a similar annual reporting system. (Estimated GHG emissions reductions of 31,587 MT CO₂e over 30 years).
- Renewable Energy: Reduce GHG emissions associated with energy demand of the Project that exceeds on-site energy generation capacity by using Renewable Energy for a period sufficient to achieve GHG emission reductions equal to approximately 2.5% of the total estimate of GHG emissions that could occur in the hypothetical 100% backfill emissions scenario. (Estimated GHG emissions reductions of 7,617 MT CO₂e).

City of Inglewood Local Direct Reduction Measures

- Conversion to Zero-Emissions Vehicles (ZEVs)
 - Transit ZEVs: Replacement of two local transit vehicles to operate within the City of Inglewood with ZEVs and provision of charging infrastructure. (Estimated GHG emissions reductions of 597 MT CO₂e over 10 years).
 - Municipal Fleet ZEVs: Replacement of 10 local City of Inglewood municipal fleet vehicles with ZEVs. (Estimated GHG emissions reductions of 299 MT CO₂e over 10 years).
- EVCS Infrastructure: Support adoption of ZEVs by facilitating installation of 20 EVCS in publicly accessible locations in the City of Inglewood. (Estimated GHG emissions reductions of 2,029 MT CO₂e over 10 years).

• Add Carbon Sequestration Capacity (Tree Planting): Develop or enter into partnerships with existing organizations to develop a program to plant one thousand (1,000) trees within the City of Inglewood. (Estimated GHG emissions reductions of 700 CO₂e MT over 20 years).

Application of measures described above, some or all of which could be substituted with other technologies or strategies to reduce GHG emissions that may emerge in the future¹, would achieve, together with the local direct measures and carbon offset credits identified in the AB 987 Application and the additional carbon offset credits that the Applicant has committed to purchase pursuant to the commitment letter to which this Exhibit is attached, approximately 95% (*i.e.*, 289,120 MT CO₂e) of the emissions reductions that would be necessary under the hypothetical 100% backfill emissions scenario.

If any additional emissions reductions are shown to be necessary pursuant to an annual GHG Verification Report, that report would identify and require implementation of additional local, direct GHG emissions reduction measures to achieve those reductions. A demonstration of how such additional local direct measures, in combination with those identified above, could achieve the 50% local, direct requirement under the hypothetical 100% backfill emissions scenario is provided in Table 3 below:

-

¹ If the Applicant proposes to substitute other GHG emissions reduction measures to replace any local, direct measures that the Applicant has committed, in the commitment letter to which this Exhibit is attached, to implement prior to the issuance of grading permits or by the end of the first NBA season or June of the first NBA season, Applicant shall obtain the City of Inglewood's and CARB's approval for such substitution.

Table 3. Hypothetical 100% Backfill Emissions Scenario:
Summary of Potential GHG Emissions Reductions from Local, Direct Measures

Local Direct Measure	Committed or Potential Measure	Implementation	Emissions Reductions (MT CO ₂ e)
Renewable Energy	Committed	Reduce GHG emissions associated with energy demand of the Project that exceeds on-site energy generation capacity by using Renewable Energy for a period sufficient to achieve GHG emission reductions equal to approximately 2.5% of the total estimate of GHG emissions that could occur in the hypothetical 100% backfill emissions scenario.	7,617
Waste Reduction and Diversion	Committed	Implement a waste reduction and diversion program for the Project, with the exception of the hotel, with a goal of producing zero landfill waste.	31,587
Smart Parking	Committed	Install Smart Parking system in all IBEC Project parking structures.	1,480
On-Site EVCS	Committed	Install 330 electric vehicle charging stations in IBEC Project parking structures.	13,918
Transit ZEVs	Committed	Purchase 2 shuttles for local transit service within City of Inglewood (10-year operational life).	597
Municipal Fleet ZEVs	Committed	Purchase 10 ZEVs for municipal fleet (10-year operational life).	299
Neighborhood EVCS	Committed	Install 20 EVCS accessible to local EV drivers in the City of Inglewood.	2,029
Tree Planting	Committed	Implement local program to plant 1,000 trees.	700
Additional Renewable Energy	Potential	Purchase and use renewable energy for Project operations as necessary to achieve additional reductions.	15,563
Total			73,790

Notes: Totals may not add due to rounding

See Attachment 2: IBEC Project Calculation of GHG Emissions Reductions – Local, Direct Measures

As shown in Table 4 below, application of these additional local direct measures would be sufficient to meet the local, direct measure requirements of AB 987 in the hypothetical 100% backfill emissions scenario.

Table 4. Summary of Local, Direct Emissions Reductions, Hypothetical 100% Backfill Emissions Scenario

Local Direct Measurements Requirements and Reductions	MT CO2e
GHG Emissions Reductions Required from Local, Direct Measures for Total Net New Emissions, Hypothetical 100% Backfill Emissions Scenario	152,342
50% of Total Emissions Reductions from LEED Gold Qualifying as Local Direct Measures	3,755 ^a
Total Reductions from IBEC TDM Program	74,797ª
Total Reductions Through Other Committed Local Direct GHG Reductions	58,227
Total Potential Reductions Through Additional Local Direct GHG Reductions	15,563
Total Potential Reductions from Local, Direct Measures	152,342

Notes: Totals may not add due to rounding

^a IBEC Project AB 987 Application, June 12, 2019, Supplemental Materials, Attachment 3: IBEC Project Greenhouse Gas Analysis Supplemental Technical Memorandum, Table 16

ATTACHMENT 1

IBEC Project

Calculation of Net Emissions

Hypothetical 100% Backfill GHG Emissions Scenario

Net GHG Emissions Summary: Proposed IBEC Project - Hypothetical 100% Backfill GHG Emissions Scenario

Project Condition																		
	Emissions Source	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
	Construction	3,834	8,373	7,437	1,188													
	Project Operations				11,996	23,244	22,595	22,014	21,492	21,020	20,593	20,033	19,480	18,961	18,473	18,015	17,583	17,177
Hypothetical 100% Backfill	Backfilled Operations				3,900	7,833		7,304	7,065	6,840	6,627	6,434	6,243	6,061	5,888	5,722	5,565	5,414
CUC Fii Ci-	Total Project Emissions (Indirect + Direct)	3,834	8,373	7,437	17,084	31,077		29,318	28,558	27,861	27,220	26,468	25,723	25,022	24,361	23,737	23,148	22,590
drid Ellissions Scellano	Existing Operations (2018)	1,209	1,209	1,209	7,249	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289
	NET GHG EMISSIONS	2,625	7,164	6,228	9,835	17,788	16,864	16,029	15,268	14,571	13,931	13,179	12,434	11,733	11,072	10,448	9,858	9,301
	Cumulative Total	2,625	9,789	16,016	25,851	43,639	60,503	76,532	91,800	106,371	120,302	133,481	145,915	157,648	168,719	179,167	189,025	198,326
TDM and without Project																		
Design Features	Emissions Source	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054
	Construction																	
	Backfilled Operations	5,269	5,129	4,993	4,862	4,733	4,607	4,484	4,361	4,356	4,352	4,348	4,346	4,343	4,343	4,343	4,343	4,343
	Project Operations	16,792	16,426	16,075	15,739	15,414	15,098	14,789	14,485	14,467	14,452	14,440	14,431	14,422	14,422	14,422	14,422	14,422
	Total Project Emissions (Indirect + Direct)	22,061	21,555	21,068	20,601	20,147	19,705	19,272	18,846	18,822	18,804	18,789	18,776	18,766	18,766	18,766	18,766	18,766
	Existing Operations (2018)	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289	13,289
	NET GHG EMISSIONS	8,771	8,265	7,779	7,312	6,858	6,416	5,983	5,556	5,533	5,514	5,499	5,487	5,476	5,476	5,476	5,476	5,476
	Cumulative Total	207,098	215,363	223,142	230,454	237,312	243,727	249,710	255,267	260,800	266,314	271,814	277,301	282,777	288,253	293,730	299,206	304,683

Net GHG Emissions Summary: Variant- Hypothetical 100% Backfill GHG Emissions Scenario

Project Condition																		
	Emissions Source	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
	Construction	3,860	8,373	7,437	1,188													
Hypothetical	Project Operations				11,996	23,244	22,595	22,014	21,492	21,020	20,593	20,033	19,480	18,961	18,473	18,015	17,583	17,177
100% Backfill	Backfilled Operations				3,900	7,833	7,559	7,304	7,065	6,840	6,627	6,434	6,243	6,061	5,888	5,722	5,565	5,414
GHG Emissions Scenario	Total Project Emissions (Indirect + Direct)	3,860	8,373	7,437	17,084	31,077	30,154	29,318	28,558	27,861	27,220	26,468	25,723	25,022	24,361	23,737	23,148	22,590
	Existing Operations (2018)	1,269	1,269	1,269	7,309	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349
	NET GHG EMISSIONS	2,591	7,105	6,168	9,776	17,728	16,805	15,969	15,209	14,512	13,872	13,119	12,375	11,674	11,012	10,389	9,799	9,242
GHG Emissions without	Cumulative Total	2,591	9,696	15,864	25,640	43,368	60,173	76,143	91,352	105,864	119,735	132,855	145,229	156,903	167,916	178,304	188,103	197,345
TDM and without Project		,											•					
Design Features	Emissions Source	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054
	Construction																	
	Project Operations	16,792	16,426	16,075	15,739	15,414	15,098	14,789	14,485	14,467	14,452	14,440	14,431	14,422	14,422	14,422	14,422	14,422
	Backfilled Operations	5,269	5,129	4,993	4,862	4,733	4,607	4,484	4,361	4,356	4,352	4,348	4,346	4,343	4,343	4,343	4,343	4,343
	Total Project Emissions (Indirect + Direct)	22,061	21,555	21,068	20,601	20,147	19,705	19,272	18,846	18,822	18,804	18,789	18,776	18,766	18,766	18,766	18,766	18,766
	Existing Operations (2018)	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349	13,349
	NET GHG EMISSIONS	8,712	8,206	7,720	7,252	6,799	6,357	5,924	5,497	5,474	5,455	5,440	5,428	5,417	5,417	5,417	5,417	5,417
	Cumulative Total	206,057	214,263	221,983	229,235	236,034	242,391	248,314	253,811	259,285	264,741	270,181	275,608	281,026	286,443	291,860	297,277	302,694

Backfilled Operational Emissions

Total Backfilled Emissions by Year																
Emissions Source	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	
Clippers Event Nights + Office + MS Events	7,799.64	7,833.13	7,558.99	7,303.88	7,065.17	6,840.20	6,627.47	6,434.40	6,242.93	6,061.03	5,887.66	5,722.46	5,564.54	5,413.60	5,268.67	
The state of the s			,,,,,,	,	,		.,		.,	.,				.,	.,	
Emissions Source	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054
Clippers Event Nights + Office + MS Events	5,128.88	4,993.44	4,861.95	4,733.47	4,607.47	4,483.52	4,360.95	4,355.81	4,351.70	4,348.37	4,345.59	4,343.24	4,343.24	4,343.24	4,343.24	4,343.24
										•	-					
Clippers Event Days Backfilled at Staples	0004	47	000/	2007	0000	2000	0000	0004	0000	0000	2004	2005	0001	0007	0000	
Emissions Source	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	
Energy (Electricity and Natural Gas)	876.86	845.31	813.76	782.21	750.66	719.11	687.56	656.01	624.46	592.90	561.35	529.80	498.25	466.70	435.15	
Area	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
Mobile (On-Road)	2,489.37	2,389.82	2,304.66	2,229.76	2,163.70	2,105.04	2,052.98	2,011.51	1,970.90	1,935.45	1,904.60	1,878.14	1,855.62	1,836.85	1,821.32	
Solid Waste	130.80	130.80	130.80	130.80	130.80	130.80	130.80	130.80	130.80	130.80	130.80	130.80	130.80	130.80	130.80	
Water	430.72	415.84	400.96	386.08	371.20	356.31	341.43	326.55	311.67	296.79	281.91	267.03	252.15	237.27	222.38	
Total	3,927.76	3,781.77	3,650.18	3,528.85	3,416.36	3,311.27	3,212.77	3,124.87	3,037.83	2,955.95	2,878.66	2,805.78	2,736.82	2,671.62	2,609.66	
Emissions Source	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	205
Energy (Electricity and Natural Gas)	403.60	372.05	340.50	308.95	277.40	245.85	214.29	214.29	214.29	214.29	214.29	214.29	214.29	214.29	214.29	214.29
Area	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Mobile (On-Road)	1.808.56	1,798.15	1.789.86	1.783.19	1.777.87	1.773.64	1.770.16	1,767.39	1,765.18	1.763.38	1.761.88	1,760.62	1.760.62	1.760.62	1.760.62	1.760.62
Solid Waste	130.80	1,796.13	130.80	130.80	130.80	130.80	130.80	1,707.39	130.80	130.80	130.80	130.80	130.80	130.80	130.80	130.80
Water	207.50	192.62	177.74	162.86	147.98	133.10	118.22	118.22	118.22	118.22	118.22	118.22	118.22	118.22	118.22	118.22
Total	2,550.47	2,493.62	2,438.90	2,385.80	2,334.05	2,283.39	2,233.48	2,230.71	2,228.49	2,226.70	2,225.20	2,223.94	2,223.94	2,223.94	2,223.94	2,223.94
Total	2,330.47	2,493.02	2,430.90	2,363.60	2,334.05	2,203.39	2,233.40	2,230.71	2,228.49	2,220.70	2,225.20	2,223.94	2,223.94	2,223.94	2,223.94	2,223.94
Backfilled Office																
Emissions Source	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	
Energy (Electricity and Natural Gas)	92.58	88.80	85.03	81.25	77.47	73.70	69.92	66.14	62.36	58.59	54.81	51.03	47.26	43.48	39.70	
Area	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mobile (On-Road)	215.89	214.07	212.26	210.44	208.63	206.81	205.00	203.18	201.36	199.55	197.73	195.92	194.10	192.28	190.47	
Solid Waste	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	
Water	23.15	22.27	21.40	20.53	19.65	18.78	17.91	17.03	16.16	15.29	14.41	13.54	12.67	11.79	10.92	
Total	340.91	334.44	327.98	321.51	315.04	308.58	302.11	295.64	289.18	282.71	276.24	269.78	263.31	256.84	250.38	
		•	•							•						
Emissions Source	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054
Energy (Electricity and Natural Gas)	35.92	32.15	28.37	24.59	20.82	17.04	13.26	13.26	13.26	13.26	13.26	13.26	13.26	13.26	13.26	13.26
Area	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mobile (On-Road)	188.65	186.84	185.02	183.20	181.39	179.57	177.76	177.76	177.76	177.76	177.76	177.76	177.76	177.76	177.76	177.76
Solid Waste	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29
Water	10.05	9.17	8.30	7.43	6.55	5.68	4.80	4.80	4.80	4.80	4.80	4.80	4.80	4.80	4.80	4.80
Total	243.91	237.44	230.98	224.51	218.04	211.58	205.11	205.11	205.11	205.11	205.11	205.11	205.11	205.11	205.11	205.11
MC Dealefilled at ather LA Vanuer																
MS Backfilled at other LA Venues Emissions Source	2024	2025	2026	2027	2028	2029	2020	2031	2032	2022	2034	2025	2027	2037	2038	
	876.86	1.162.58	1,113.95	1.065.32	1.016.69	968.06	2030 919.43			2033 773.53	724.90	2035	2036	579.00		
Energy (Electricity and Natural Gas)	876.86	1,162.58	1,113.95	1,065.32	1,016.69	968.06		870.79	822.16	113.53	124.90	676.27	627.64	5/9.00	530.37	
Area Mahile (On Bood)	2 120 22	2.045.12	1.070.05	1 000 15	1.051.70	1 001 42	1 75/ 07	1 701 00	1 (0/ /2	1 (5/ 00	1 (20.00	1 (07.25	1 507 07	1 571 01	1 550 / 2	
Mobile (On-Road)	2,130.32	2,045.13	1,972.25	1,908.15	1,851.62	1,801.42	1,756.87	1,721.38	1,686.63	1,656.29	1,629.89	1,607.25	1,587.97	1,571.91	1,558.62	
Solid Waste	114.26	114.26	114.26 380.36	114.26	114.26	114.26	114.26	114.26	114.26	114.26	114.26	114.26	114.26 234.54	114.26	114.26	
Water	409.53 3,530.97	394.95 3,716.92	380.36	365.78 3,453.52	351.20 3,333.77	336.62 3,220.36	322.03 3,112.59	307.45 3,013.89	292.87 2,915.92	278.29 2,822.37	263.71 2,732.76	249.12 2,646.91	2,564.41	219.96 2,485.14	205.38	
Total	3,530.97	3,710.92	3,580.83	3,453.52	3,333.11	3,220.30	3,112.59	3,013.89	2,915.92	2,022.37	2,132.10	∠,040.91	2,364.41	2,485.14	2,408.64	
Emissions Source	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054
Energy (Electricity and Natural Gas)	481.74	433.11	384.48	335.85	287.22	238.58	189.95	189.95	189.95	189.95	189.95	189.95	189.95	189.95	189.95	189.95
Area	-	- 433.11		-	- 201.22	-	-	- 107.73	- 107.75	-	-	-	-	-	- 107.73	-
Mobile (On-Road)	1,547.70	1,538.79	1,531.70	1,526.00	1,521.44	1,517.82	1,514.85	1,512.47	1,510.58	1,509.04	1,507.76	1,506.68	1,506.68	1,506.68	1,506.68	1,506.68
Solid Waste	114.26	114.26	114.26	114.26	114.26	114.26	114.26	114.26	114.26	114.26	114.26	114.26	114.26	114.26	114.26	114.26
Water	190.79	176.21	161.63	147.05	132.47	117.88	103.30	103.30	103.30	103.30	103.30	103.30	103.30	103.30	103.30	103.30
Total	2,334.50	2,262.38	2,192.07	2,123.15	2,055.38	1,988.55	1,922.36	1,919.99	1,918.10	1,916.56	1,915.28	1,914.20	1,914.20	1,914.20	1,914.20	1,914.20
	2,337.30	2,202.30	2,172.01	2,123.13	2,000.00	1,700.00	1,722.30	1,717.77	1,710.10	1,710.00	1,710.20	1,,17.20	1,111.20	1,,17.20	1,,17.20	1,717.20
Note:																

Note:

Units are in MT CO2e.

Mobile Source Emissions Backfill of 47 NBA Event Nights with 10,500-Attendee Event

Existing (Average Event Attendees)						
			Estimat	ed Annual Trips		
	Size		Weekday	We	rekend	Total
Land Use		Days with Events	Days without Events	Days with Events	Days without Events	
Arena (employees)	Varies	28,334	0	12,020	0	40,354
Arena (attendees)	Varies	296,126	0	125,630	0	421,756
	Total	324,460	0	137,650	0	462,110

										E	vent Backfill	GHG EMISSIC	WS													
2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035		2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
168.4423186	161.70601	155.94389	150.8758	146.40585	142.43678	138.91382	136.10768	133.36004	130.96128	128.87371	127.08373	125.55933	124.2896	123.23878	122.3754	121.6708	121.11	120.6589	120.2985	120.0128	119.7773	119.5897	119.4401	119.3185	119.2171	119.1315
2320.931532	2228.1134	2148.7183	2078.8861	2017.2956	1962.6067	1914.0645	1875.3993	1837.5402	1804.4881	1775.7239	1751.0602	1730.0558	1712.5604	1698.0815	1686.186	1676.476	1668.75	1662.534	1657.568	1653.631	1650.387	1647.802	1645.74	1644.065	1642.668	1641.489
2,489.37	2,389.82	2,304.66	2,229.76	2,163.70	2,105.04	2,052.98	2,011.51	1,970.90	1,935.45	1,904.60	1,878.14	1,855.62	1,836.85	1,821.32	1,808.56	1,798.15	1,789.86	1,783.19	1,777.87	1,773.64	1,770.16	1,767.39	1,765.18	1,763.38	1,761.88	1,760.62

Convers	ion Factors	
gram	1	AΤ

Assumptions	miles	Assumptions
Attendees Trip Length (mi)	19.38	miles to zip code data to Staples
Employee Trip Lengths (mi)	14.7	miles; Home-Work CalEEMod Defaults
Commercial Trip Lengths (ml)	8.4	miles; Commercial-Customer CalEEMod Defaults

	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034 20	35 20	136 2037	2038	2039	2040	2041	2042	043 20	14 204	2046	2047	2048 2	049 2050
EMFAC2014 CO ₂ Emission Factors (g/mi)	283.9535	272.5977349	262.8841774	254.340579	246.805314	240.1144113	234.1755	229.4450523	224.8132	220.76946	217.25031 214.232	84 211.663	106 209.52259	207.75117	206.29578	205.10788 2	04.16262 2	03.40218 202.7	459 202.312	6 201.9159	201.5997 2	01.3474 20	1.1426 200.9	716 200.8273
EMFAC2014 CO ₂ Emission Factors (MT/mi)	0.000284	0.000272598	0.000262884	0.000254341	0.000246805	0.000240114	0.000234	0.000229445	0.0002248	0.0002208	0.0002173 0.00021	42 0.00021	17 0.0002095	0.0002078	0.0002063	0.0002051 0	.0002042 0	0.0002034	0.00020	3 0.000201	0.000202	.000201 0.	0.002	201 0.000201

Mobile Source Emissions Backfill of Market Shifted Events - All Market-Shifted Events Backfilled With Same-Sized Event

Existing (Average Event Attendees)						
			Estimat	ed Annual Trips		
	Size		Weekday	We	Total	
Land Use		Days with Events	Days without Events	Days with Events	Days without Events	
Arena (employees)	Varies	16,506	0	15,262	0	31,768
Arena (attendees)	Varies	192,586	0	170,436	0	363,022
	Total	209,092	0	185,698	0	394,790

										E	vent Backfill	GHG EMISSIC	WS													
2024	2025	2026	2027	2028	2020	2020	2021	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2042	2044	2046	2046	2047	2049	2040	2050
132.6033498	127.30031	122.76418	118.77441		112.13093	109.35754	107.14845						97.844872				95.34182		94.70297	94,478	94.29265	94.14497	94.02715	93.93149	93.85165	
1997.717179	1917.8249	1849.4865	1789.3792	1736.3658	1689.2929	1647.5107	1614.23	1581.6432	1553.194	1528.4355	1507.2065	1489.1272	1474.0682	1461.6056	1451.366	1443.009	1436.359	1431.009	1426.734	1423.345	1420.553	1418.328	1416.553	1415.112	1413.909	1412.89
2,130.32	2,045.13	1,972.25	1,908.15	1,851.62	1,801.42	1,756.87	1,721.38	1,686.63	1,656.29	1,629.89	1,607.25	1,587.97	1,571.91	1,558.62	1,547.70	1,538.79	1,531.70	1,526.00	1,521.44	1,517.82	1,514.85	1,512.47	1,510.58	1,509.04	1,507.76	1,506.68

	Conversion Factors	
gram		MT
	1000000	

Assumptions	miles	Assumptions
Attendees Trip Length (mi)	19.38	miles to zip code data to Staples
Employee Trip Lengths (mi)	14.7	miles; Home-Work CalEEMod Defaults
Commercial Trip Lengths (ml)	8.4	miles: Commercial-Customer CalEEMod Defaults

	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
EMFAC2014 CO ₂ Emission Factors (g/mi)	283.9535	272.5977349	262.8841774	254.340579	246.805314	240.1144113	234.1755	229.4450523	224.8132	220.76946	217.25031 214.	23284 21	11.66306 2	209.52259	207.75117	206.29578	205.10788	204.16262	203.40218	202.79459	202.31286	201.91595	201.5997 2	201.3474	201.1426	200.9716	200.8273
EMFAC2014 CO ₂ Emission Factors (MT/mi)	0.000284	0.000272598	0.000262884	0.000254341	0.000246805	0.000240114	0.000234	0.000229445	0.0002248	0.0002208	0.0002173 0.00	0.02142	0002117 0	0.0002095	0.0002078	0.0002063	0.0002051	0.0002042	0.0002034	0.0002028	0.0002023	0.0002019	0.000202 0	0.000201	0.000201	0.000201	0.000201

Page 1 of 21

Honda Center - Orange County, Annual

Honda Center Orange County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Arena	650.00	1000sqft	208.93	650,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	30
Climate Zone	8			Operational Year	2045
Utility Company	Anaheim Public Utilities				
CO2 Intensity (lb/MWhr)	0	CH4 Intensity (lb/MWhr)	0	N2O Intensity (lb/MWhr)	0

1.3 User Entered Comments & Non-Default Data

Page 2 of 21

Honda Center - Orange County, Annual

Project Characteristics - Honda Center operational emissions. CO2e rate assumed to be 0 per RPS goals in 2045.

Land Use - Based Honda Center square footage

Construction Phase - Operational emissions only.

Off-road Equipment - Operational emissions only.

Off-road Equipment - Operational emissions only.

Trips and VMT - Operational emissions only.

Architectural Coating - Operational emissions only.

Vehicle Trips - Mobile sources calculated separately.

Energy Use - Based on actual energy consumption provided in Honda Center Enhancement Project EIR

Solid Waste - Solid waste generation based on 1.29 ton/1000 sq ft.

Honda Center - Orange County, Annual

Page 3 of 21

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	ConstArea_Nonresidential_Exterior	325,000.00	0.00
tblArchitecturalCoating	ConstArea_Nonresidential_Interior	975,000.00	0.00
tblConstructionPhase	NumDays	330.00	0.00
tblConstructionPhase	NumDays	180.00	0.00
tblEnergyUse	LightingElect	2.99	10.43
tblEnergyUse	NT24E	3.83	13.35
tblEnergyUse	NT24NG	6.86	6.57
tblEnergyUse	T24E	1.63	5.68
tblEnergyUse	T24NG	14.04	13.50
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblProjectCharacteristics	CH4IntensityFactor	0.029	0
tblProjectCharacteristics	CO2IntensityFactor	1543.28	0
tblProjectCharacteristics	N2OIntensityFactor	0.006	0
tblSolidWaste	SolidWasteGenerationRate	17.89	838.50
tblTripsAndVMT	WorkerTripNumber	55.00	0.00
tblVehicleTrips	ST_TR	10.71	0.00
tblVehicleTrips	SU_TR	10.71	0.00
tblVehicleTrips	WD_TR	10.71	0.00

2.0 Emissions Summary

Page 5 of 21

Honda Center - Orange County, Annual

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
		Highest		

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	√yr		
Area	2.6508	7.0000e- 005	8.2400e- 003	0.0000		3.0000e- 005	3.0000e- 005	 	3.0000e- 005	3.0000e- 005	0.0000	0.0161	0.0161	4.0000e- 005	0.0000	0.0172
Energy	0.0703	0.6395	0.5372	3.8400e- 003		0.0486	0.0486	 	0.0486	0.0486	0.0000	696.1576	696.1576	0.0133	0.0128	700.2945
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste	ii					0.0000	0.0000		0.0000	0.0000	170.2079	0.0000	170.2079	10.0590	0.0000	421.6829
Water	ii					0.0000	0.0000		0.0000	0.0000	88.8313	0.0000	88.8313	9.1238	0.2154	381.1259
Total	2.7211	0.6396	0.5454	3.8400e- 003	0.0000	0.0486	0.0486	0.0000	0.0486	0.0486	259.0392	696.1737	955.2129	19.1962	0.2282	1,503.120 5

Page 6 of 21

Honda Center - Orange County, Annual

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category					ton	ıs/yr							МТ	/yr			
Area	2.6508	7.0000e- 005	8.2400e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0161	0.0161	4.0000e- 005	0.0000	0.0172	
Energy	0.0703	0.6395	0.5372	3.8400e- 003		0.0486	0.0486		0.0486	0.0486	0.0000	696.1576	696.1576	0.0133	0.0128	700.2945	
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Waste	;	 				0.0000	0.0000		0.0000	0.0000	170.2079	0.0000	170.2079	10.0590	0.0000	421.6829	
Water	;	 - 				0.0000	0.0000		0.0000	0.0000	88.8313	0.0000	88.8313	9.1238	0.2154	381.1259	
Total	2.7211	0.6396	0.5454	3.8400e- 003	0.0000	0.0486	0.0486	0.0000	0.0486	0.0486	259.0392	696.1737	955.2129	19.1962	0.2282	1,503.120 5	

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	2/23/2019	2/22/2019	5	0	
2	Architectural Coating	Architectural Coating	9/15/2040	9/14/2040	5	0	

Page 13 of 21

Honda Center - Orange County, Annual

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		tons/yr										МТ	/yr			
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Electricity Unmitigated	ii ii ii			,		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Mitigated	0.0703	0.6395	0.5372	3.8400e- 003		0.0486	0.0486		0.0486	0.0486	0.0000	696.1576	696.1576	0.0133	0.0128	700.2945
NaturalGas Unmitigated	0.0703	0.6395	0.5372	3.8400e- 003		0.0486	0.0486		0.0486	0.0486	0.0000	696.1576	696.1576	0.0133	0.0128	700.2945

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 21

Honda Center - Orange County, Annual

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Arena	1.30455e +007	0.0703	0.6395	0.5372	3.8400e- 003		0.0486	0.0486	1 1 1	0.0486	0.0486	0.0000	696.1576	696.1576	0.0133	0.0128	700.2945
Total		0.0703	0.6395	0.5372	3.8400e- 003		0.0486	0.0486		0.0486	0.0486	0.0000	696.1576	696.1576	0.0133	0.0128	700.2945

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Arena	1.30455e +007	0.0703	0.6395	0.5372	3.8400e- 003		0.0486	0.0486		0.0486	0.0486	0.0000	696.1576	696.1576	0.0133	0.0128	700.2945
Total		0.0703	0.6395	0.5372	3.8400e- 003		0.0486	0.0486		0.0486	0.0486	0.0000	696.1576	696.1576	0.0133	0.0128	700.2945

Page 15 of 21

Honda Center - Orange County, Annual

5.3 Energy by Land Use - Electricity Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	-/yr	
Arena	1.9149e +007		0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	/yr	
Arena	+ 007 1	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

Page 16 of 21

Honda Center - Orange County, Annual

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	2.6508	7.0000e- 005	8.2400e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0161	0.0161	4.0000e- 005	0.0000	0.0172
Unmitigated	2.6508	7.0000e- 005	8.2400e- 003	0.0000	i i	3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0161	0.0161	4.0000e- 005	0.0000	0.0172

6.2 Area by SubCategory Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory		tons/yr											MT	⁻ /yr		
Architectural Coating	0.3013					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	2.3488					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	7.5000e- 004	7.0000e- 005	8.2400e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0161	0.0161	4.0000e- 005	0.0000	0.0172
Total	2.6508	7.0000e- 005	8.2400e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0161	0.0161	4.0000e- 005	0.0000	0.0172

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 21

Honda Center - Orange County, Annual

6.2 Area by SubCategory Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	⁷ /yr		
Architectural Coating	0.3013					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	2.3488		1 			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	7.5000e- 004	7.0000e- 005	8.2400e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0161	0.0161	4.0000e- 005	0.0000	0.0172
Total	2.6508	7.0000e- 005	8.2400e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0161	0.0161	4.0000e- 005	0.0000	0.0172

7.0 Water Detail

7.1 Mitigation Measures Water

Page 18 of 21

Honda Center - Orange County, Annual

	Total CO2	CH4	N2O	CO2e
Category		МТ	⁻ /yr	
Imagatou	88.8313	9.1238	0.2154	381.1259
- Crimingatou	88.8313	9.1238	0.2154	381.1259

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	-/yr	
Arena	280.001 / 17.8724	88.8313	9.1238	0.2154	381.1259
Total		88.8313	9.1238	0.2154	381.1259

Page 19 of 21

Honda Center - Orange County, Annual

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	-/yr	
Arena	280.001 / 17.8724	88.8313	9.1238	0.2154	381.1259
Total		88.8313	9.1238	0.2154	381.1259

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e		
	MT/yr					
	170.2079	10.0590	0.0000	421.6829		
	170.2079	10.0590	0.0000	421.6829		

Honda Center - Orange County, Annual

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	-/yr	
Arena	838.5	170.2079	10.0590	0.0000	421.6829
Total		170.2079	10.0590	0.0000	421.6829

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
Arena	838.5	170.2079	10.0590	0.0000	421.6829
Total		170.2079	10.0590	0.0000	421.6829

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

Page 21 of 21

Honda Center - Orange County, Annual

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number

11.0 Vegetation

Page 1 of 21

The Forum Emissions - Los Angeles-South Coast County, Annual

The Forum Emissions

Los Angeles-South Coast County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Arena	346.00	1000sqft	111.21	346,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	8			Operational Year	2045
Utility Company	Southern California Edisc	on			
CO2 Intensity (lb/MWhr)	0	CH4 Intensity (lb/MWhr)	0	N2O Intensity (lb/MWhr)	0

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Backfilled emissions at The Forum. SCE CO2e intensity rate assumed to be 0 in 2045.

Land Use - Based on actual square footage.

Construction Phase - Operations run only.

Off-road Equipment - Operations run only.

Off-road Equipment - Operations run only.

Trips and VMT - Operations run only.

Architectural Coating - Operations run only.

Vehicle Trips - Mobile sources calculated separately.

Energy Use - Renovated in 2014. CalEEMod defaults for energy usage.

Solid Waste - Based on 1.29 tons/1000 sq ft.

Page 3 of 21

The Forum Emissions - Los Angeles-South Coast County, Annual

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	ConstArea_Nonresidential_Exterior	173,000.00	0.00
tblArchitecturalCoating	ConstArea_Nonresidential_Interior	519,000.00	0.00
tblConstructionPhase	NumDays	220.00	0.00
tblConstructionPhase	NumDays	120.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblProjectCharacteristics	CH4IntensityFactor	0.029	0
tblProjectCharacteristics	CO2IntensityFactor	702.44	0
tblProjectCharacteristics	N2OIntensityFactor	0.006	0
tblSolidWaste	SolidWasteGenerationRate	9.52	446.34
tblTripsAndVMT	WorkerTripNumber	29.00	0.00
tblVehicleTrips	ST_TR	10.71	0.00
tblVehicleTrips	SU_TR	10.71	0.00
tblVehicleTrips	WD_TR	10.71	0.00

2.0 Emissions Summary

Page 5 of 21

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
		Highest		

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	1.4110	4.0000e- 005	4.3900e- 003	0.0000		2.0000e- 005	2.0000e- 005	 	2.0000e- 005	2.0000e- 005	0.0000	8.5900e- 003	8.5900e- 003	2.0000e- 005	0.0000	9.1400e- 003
Energy	0.0390	0.3545	0.2978	2.1300e- 003		0.0269	0.0269		0.0269	0.0269	0.0000	385.8950	385.8950	7.4000e- 003	7.0700e- 003	388.1882
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste	ri——————— :: :: ::	i	i			0.0000	0.0000	i	0.0000	0.0000	90.6030	0.0000	90.6030	5.3545	0.0000	224.4651
Water	ni	i	i	i		0.0000	0.0000	i 	0.0000	0.0000	47.2856	0.0000	47.2856	4.8567	0.1147	202.8763
Total	1.4500	0.3545	0.3022	2.1300e- 003	0.0000	0.0270	0.0270	0.0000	0.0270	0.0270	137.8886	385.9036	523.7922	10.2186	0.1218	815.5387

Page 6 of 21

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Area	1.4110	4.0000e- 005	4.3900e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	8.5900e- 003	8.5900e- 003	2.0000e- 005	0.0000	9.1400e- 003
Energy	0.0390	0.3545	0.2978	2.1300e- 003		0.0269	0.0269		0.0269	0.0269	0.0000	385.8950	385.8950	7.4000e- 003	7.0700e- 003	388.1882
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste		,	1 			0.0000	0.0000		0.0000	0.0000	90.6030	0.0000	90.6030	5.3545	0.0000	224.4651
Water		,	,			0.0000	0.0000		0.0000	0.0000	47.2856	0.0000	47.2856	4.8567	0.1147	202.8763
Total	1.4500	0.3545	0.3022	2.1300e- 003	0.0000	0.0270	0.0270	0.0000	0.0270	0.0270	137.8886	385.9036	523.7922	10.2186	0.1218	815.5387

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	10/6/2018	10/5/2018	5	0	
2	Architectural Coating	Architectural Coating	2/19/2033	2/18/2033	5	0	

CalEEMod Version: CalEEMod.2016.3.2

Page 13 of 21

The Forum Emissions - Los Angeles-South Coast County, Annual

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr				MT	/yr					
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Electricity Unmitigated				,		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Mitigated	0.0390	0.3545	0.2978	2.1300e- 003		0.0269	0.0269		0.0269	0.0269	0.0000	385.8950	385.8950	7.4000e- 003	7.0700e- 003	388.1882
NaturalGas Unmitigated	0.0390	0.3545	0.2978	2.1300e- 003		0.0269	0.0269	 	0.0269	0.0269	0.0000	385.8950	385.8950	7.4000e- 003	7.0700e- 003	388.1882

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 21

The Forum Emissions - Los Angeles-South Coast County, Annual

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Arena	7.2314e +006	0.0390	0.3545	0.2978	2.1300e- 003		0.0269	0.0269		0.0269	0.0269	0.0000	385.8950	385.8950	7.4000e- 003	7.0700e- 003	388.1882
Total		0.0390	0.3545	0.2978	2.1300e- 003		0.0269	0.0269		0.0269	0.0269	0.0000	385.8950	385.8950	7.4000e- 003	7.0700e- 003	388.1882

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Arena	7.2314e +006	0.0390	0.3545	0.2978	2.1300e- 003		0.0269	0.0269		0.0269	0.0269	0.0000	385.8950	385.8950	7.4000e- 003	7.0700e- 003	388.1882
Total		0.0390	0.3545	0.2978	2.1300e- 003		0.0269	0.0269		0.0269	0.0269	0.0000	385.8950	385.8950	7.4000e- 003	7.0700e- 003	388.1882

5.3 Energy by Land Use - Electricity Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	-/yr	
Arena	2.9237e +006	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		МТ	-/yr	
Arena	+006	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

CalEEMod Version: CalEEMod.2016.3.2

Page 16 of 21

The Forum Emissions - Los Angeles-South Coast County, Annual

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	1.4110	4.0000e- 005	4.3900e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	8.5900e- 003	8.5900e- 003	2.0000e- 005	0.0000	9.1400e- 003
Unmitigated	1.4110	4.0000e- 005	4.3900e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	8.5900e- 003	8.5900e- 003	2.0000e- 005	0.0000	9.1400e- 003

6.2 Area by SubCategory Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	-/yr		
Architectural Coating	0.1604					0.0000	0.0000	! !	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	1.2503					0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	4.0000e- 004	4.0000e- 005	4.3900e- 003	0.0000		2.0000e- 005	2.0000e- 005	1 	2.0000e- 005	2.0000e- 005	0.0000	8.5900e- 003	8.5900e- 003	2.0000e- 005	0.0000	9.1400e- 003
Total	1.4110	4.0000e- 005	4.3900e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	8.5900e- 003	8.5900e- 003	2.0000e- 005	0.0000	9.1400e- 003

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 21

The Forum Emissions - Los Angeles-South Coast County, Annual

6.2 Area by SubCategory Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	0.1604					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	1.2503		i			0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	4.0000e- 004	4.0000e- 005	4.3900e- 003	0.0000		2.0000e- 005	2.0000e- 005	1 	2.0000e- 005	2.0000e- 005	0.0000	8.5900e- 003	8.5900e- 003	2.0000e- 005	0.0000	9.1400e- 003
Total	1.4110	4.0000e- 005	4.3900e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	8.5900e- 003	8.5900e- 003	2.0000e- 005	0.0000	9.1400e- 003

7.0 Water Detail

7.1 Mitigation Measures Water

Page 18 of 21

	Total CO2	CH4	N2O	CO2e			
Category	MT/yr						
Mitigated		4.8567	0.1147	202.8763			
Jgatou	47.2856	4.8567	0.1147	202.8763			

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	-/yr	
Arena	149.046 / 9.5136	47.2856	4.8567	0.1147	202.8763
Total		47.2856	4.8567	0.1147	202.8763

Page 19 of 21

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	-/yr	
Arena	149.046 / 9.5136	47.2856	4.8567	0.1147	202.8763
Total		47.2856	4.8567	0.1147	202.8763

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		МТ	-/yr	
		5.3545	0.0000	224.4651
Jga.ea	90.6030	5.3545	0.0000	224.4651

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	-/yr	
Arena	446.34	90.6030	5.3545	0.0000	224.4651
Total		90.6030	5.3545	0.0000	224.4651

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
Arena	446.34	90.6030	5.3545	0.0000	224.4651
Total		90.6030	5.3545	0.0000	224.4651

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

- Totals Total	Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number

11.0 Vegetation

ATTACHMENT 2 IBEC Project Calculation of GHG Emissions Reductions Local, Direct Measures

Table of Contents

Summary	1
Electric Vehicles for Inglewood Local Transit	2
Electric Vehicles for City of Inglewood Vehicle Fleet	3
Tree Planting Program for City of Inglewood	4
Local Electric Vehicle Charging Stations in the City of Inglewood	5
IBEC On-Site Waste Reduction and Diversion Program	8
IBEC On-Site Electric Vehicle Charging Stations	10
IBEC On-Site Smart Parking	15
IBEC On-Site Use of Renewable Energy	19
CalEEMod Outputs for Waste Reduction and Diversion	21

Summary

For each local direct measure, GHG emissions reductions were estimated based on the best available information and commonly accepted calculation methodologies using conservative approaches and assumptions where appropriate. Emission reductions were quantified on a per unit basis, with anticipated reductions estimated based on the number of units planned for implementation (example: number of electric vehicles to replace fossil-fueled vehicles). Timeframes and assumed operational periods used to calculate emissions reductions for each measure are stated below, assuming project construction begins in 2021 and proposed IBEC Project operations begin in July 2024.

The GHG reduction measures evaluated included:

- Off-site local direct measures, accounting for emissions reductions based upon a conservatively anticipated useful life for each measure; and
- On-site actions for the IBEC proposed Project, accounting for emissions reductions over the 30-year operational life through 2054 of the proposed IBEC Project as analyzed in the AB 987 Application.

Results for each measure are presented as reduction in metric tons of carbon dioxide equivalent (MT CO_2e) over the anticipated lifetime of each measure.

Measure	Total MT CO₂e Reduced
Electric Vehicles for Inglewood Local Transit Vehicles	597
Electric Vehicles for City of Inglewood Vehicle Fleet	299
Tree Planting Program for City of Inglewood	700
Local Electric Vehicle Charging Stations in the City of Inglewood	2,029
IBEC On-Site Waste Reduction and Diversion Program	31,587
IBEC On-Site Electric Vehicle Charging Stations	13,918
IBEC On-Site Smart Parking	1,480
IBEC On-Site Use of Renewable Electric Power	Up to 52,889
IBEC On-Site Use of Renewable Natural Gas	Up to 30,827

As necessary, GHG calculations for each measure applied global warming potentials consistent with the California Air Resources Board (CARB) GHG Reporting Program for data years 2021 and beyond:

Greenhouse Gas	Global Warming Potential
CO ₂	1
CH ₄	25
N ₂ O	298

Each GHG reduction measure explanation includes a brief summary of the measure, key assumptions made, and the calculation methodology employed. Annual and/or per unit breakdowns of GHG reductions are provided in this document as appropriate for a given measure. For each reduction measure, details regarding the calculation methodologies, formulas, and emissions factors are included in the tables accompanying the description of each measure.

Electric Vehicles for Inglewood Local Transit

The Applicant will enter into an agreement with the City of Inglewood to cover 100% of the cost of replacement of two transit vehicles that operate within the City of Inglewood with Electric Vehicles (EVs) prior to the issuance of grading permits for the IBEC Project. The replacement of transit vehicles with EV vehicles shall be in excess of any applicable regulatory requirement, including CARB's Innovative Clean Transit program, or any previously-planned action by the City of Inglewood that would have occurred otherwise.

Estimated Results

The GHG reductions estimated for this measure are as follows:

Timeframe and Number of Units	
Annual emissions reductions per electric transit vehicle	29.8
2021-2030 emissions reductions per electric transit vehicle	298.4
2021-2030 emissions reductions achieved from two electric transit vehicles	597

Assumptions

Parameter	Assumption
Inglewood transit vehicles replaced	One local service transit shuttle One paratransit shuttle
Fuel used in current transit vehicles to be replaced	CNG
Annual miles driven per transit vehicle ¹	23,000
Years of transit vehicle use included	10
Model year of transit vehicle replaced	2021

Calculation Methodology

Based on these assumptions, emissions reductions were calculated using the following emissions factor for a T6 weight class (Department of Transportation vehicle class 4-7) CNG shuttle, obtained from the California Air Resources Board (CARB) Summary of Emissions Inventory Analysis for the Zero-Emission Airport Shuttle Regulation²

Greenhouse Gas	Emission Factors (grams/mile)
CO ₂	1,300

This represents a conservative estimate of reductions, as the source reference does not provide CH_4 or N_2O emission factors for CNG use.

¹ Local transit vehicles to be replaced with EV shuttle vehicles include the vehicle used for the I-Line local transit service in the City of Inglewood (average annual miles traveled estimated at 23,000 miles based on shuttle route, frequency, and days of operation) and a paratransit vehicle providing service in the City of Inglewood (average annual miles traveled estimated at 23,000 miles, based on U.S. Department of Energy data for average annual miles traveled for paratransit vehicles [23,400 miles]), available at: https://afdc.energy.gov/data/10309.

² California Air Resources Board, Summary of Emissions Inventory Analysis for the Zero-Emission Airport Shuttle Regulation (2019), available at: https://ww3.arb.ca.gov/msprog/asb/summary_emissions_inventory_analysis.pdf.

Electric Vehicles for City of Inglewood Vehicle Fleet

The Applicant will enter into an agreement with the City of Inglewood to cover 100% of the cost of replacing 10 fossil-fueled municipal fleet vehicles with Battery Electric Vehicles (BEVs) prior to the issuance of grading permits for the IBEC Project. The replacement of vehicles with EV vehicles shall be in excess of any applicable regulatory requirement, or any previously-planned action by the City of Inglewood that would have occurred otherwise.

Estimated Results

The GHG reductions estimated for this measure are as follows:

Timeframe and Number of Units	MT CO ₂ e Reduced
Annual emissions reductions per electric vehicle	3
2021-2030 emissions reductions per electric vehicle	30
2021-2030 emissions reductions achieved from 10 electric vehicles	299

Assumptions

Parameter	Assumption
Fuel used in current vehicles to be replaced	Gasoline
Annual miles driven per vehicle ³	11,000
Years of vehicle usage included	10
Model year of vehicles replaced	2021

Calculation Methodology

Based on these assumptions, emissions reductions were calculated using the following emissions factors obtained from EMFAC 2017,⁴ using the inputs of Light Duty Auto (LDA) vehicle class, 2021 vehicle, operating at 30 miles per hour:

Greenhouse Gas	Emission Factors (grams/mile)
CO ₂	271
CH₄	0.003
N ₂ O	0.005

³ Based on U.S. Department of Energy data for average miles traveled for light-duty vehicles (11,346 miles per year), available at: https://afdc.energy.gov/data/10309.

⁴ California Air Resources Board, EMFAC2017 Web Database, available at: https://www.arb.ca.gov/emfac/2017/.

Tree Planting Program for City of Inglewood

Prior to the issuance of grading permits for the IBEC Project, the Applicant will develop or partner with local organizations to develop a program to plant 1,000 trees within the City of Inglewood. The tree planting program will cover the cost of the acquisition and planting of the trees in Inglewood.

Estimated Results

The GHG reductions estimated for this measure are as follows:

Timeframe and Number of Units	MT CO ₂ e Reduced
Annual emissions reductions per tree	0.035
Emissions reductions per tree, 20-year period per CalEEMod	0.7
Emissions reductions achieved from all 1,000 trees	700

Assumptions

Parameter	Assumption
CalEEMod emissions reductions rate	0.035 MT/tree-year
Growing period	20 years

Calculation Methodology

Based on these assumptions, emissions reductions were calculated using the default emissions reduction factor and 20-year growing period for miscellaneous species class obtained from CalEEMod (see CalEEMod User's Guide Appendix A). The emission reductions for each tree were multiplied by the total number of trees, and then adjusted for the assumed 20-year period as defined in CalEEMod.

Local Electric Vehicle Charging Stations in City of Inglewood

Prior to the issuance of grading permits for the IBEC Project, the Applicant will enter into agreements to install twenty electric vehicle charging stations (EVCS) at locations in the City of Inglewood. These EVCS will be available in Inglewood for use by the public to charge electric vehicles at the start of construction of the proposed Project.

Estimated Results

The GHG reductions estimated for this measure are as follows:

Timeframe and Number of Units	MT CO₂e Reduced
2021-2030 emissions reductions per EVCS	101
2021-2030 emissions reductions achieved from all 20 EVCS	2,029

Calculation Methodology

The methodology to calculate GHG emissions reductions for this measure is based on a technical analysis produced by the California Air Resources Board in 2018 to study the effectiveness of EVCS, which includes an estimate of the GHG emissions reduction per EVCS. The emissions reduction estimate methodology and calculations per local EVCS are derived from Appendix H, Table H1 of that analysis. Each EVCS is conservatively assumed to be maintained and in operation for 10 years. Using this methodology, the following assumptions and resulting calculated inputs were used to derive the emissions reductions estimates:

Parameter (italicized values were calculated based on parameters listed above them)	Assumption
Years of emissions reductions included (assumed operating life of EVCS)	10
Annual Gasoline-Fueled Vehicle VMT Reduction per EVCS (PHEV)	36,500 ^a
Annual Gasoline-Fueled Vehicle VMT Reduction per EVCS (BEV)	73,000 ^a
Calculated Annual Gasoline-Fueled Vehicle VMT Reduction per EVCS	54,750 ^b
Fuel Economy of an EV (kWh/mile)	0.25 ^a
Fuel Economy of an EV (MWh/mile)	0.00025
Calculated MWh used per EVCS per year	13.69

^a California Air Resources Board, *Electric Vehicle (EV) Charging Infrastructure: Multifamily Building Standards, Appendix H: Greenhouse Gas Reduction Estimates*, Table H1.

These inputs were used to calculate emissions reductions based on the assumption that the EV chargers would facilitate displacement of gasoline-fueled passenger vehicles, reducing VMT and associated GHG emissions from such vehicles. The results were derived as follows:

- (A) Avoided fossil-fueled vehicle emissions for each year were calculated by multiplying the estimated EV miles per EVCS by annual emission factors derived from EMFAC 2017. 6
- (B) Indirect emissions associated with EVCS charging use were calculated by multiplying the calculated MWh used per EVCS by annual estimated Southern California Edison

^b Annual VMT reduction based on conservative assumption of 50% Plug-in Hybrid Electric Vehicle (PHEV) and 50% Battery Electric Vehicle (BEV).

⁵ California Air Resources Board, Electric Vehicle (EV) Charging Infrastructure: Multifamily Building Standards, Appendix H: Greenhouse Gas Reduction Estimates (April 2018), available at: https://www.arb.ca.gov/cc/greenbuildings/pdf/tcac2018.pdf.

⁶ California Air Resources Board, EMFAC2017 Web Database, available at: https://www.arb.ca.gov/emfac/2017/.

emission factors.

(C) Net emissions reductions were calculated by subtracting the EVCS charging use indirect emissions (B) from the avoided emissions produced by fossil-fueled vehicle emissions for the EV miles per EVCS (A).

The tables below provide the vehicle emissions factors, EVCS emissions factors, and annual reductions per EVCS used to calculate the total reductions per EVCS over the assumed 10-year operating period.

	Vehicle Emissions Factors				
Year	CO₂ (grams/mile)	CH₄ (grams/mile)	N₂O (grams/mile)	MT CO₂e / mile	
2021	270.666440	0.003250	0.004965	0.000272	
2022	263.568081	0.002843	0.004579	0.000264	
2023	256.386274	0.002506	0.004259	0.000257	
2024	249.204639	0.002223	0.003996	0.000250	
2025	241.943303	0.001984	0.003783	0.000243	
2026	235.484857	0.001788	0.003616	0.000236	
2027	229.729586	0.001626	0.003482	0.000230	
2028	224.621022	0.001490	0.003377	0.000225	
2029	220.072932	0.001374	0.003291	0.000221	
2030	216.037270	0.001274	0.003224	0.000217	

Notes:

Emission factors derived from EMFAC 2017 (LDA vehicle class, 30 mph, RUNEX emissions factors, South Coast Air Basin, Aggregate)

EVCS Emissions Factors Emissions per MWh				
Year	MTCO₂e / MWh			
2021	0.242566			
2022	0.238646			
2023	0.234496			
2024	0.230576			
2025	0.226656			
2026	0.222967			
2027	0.219047			
2028	0.215127			
2029	0.211438			
2030	0.207518			

Notes:

Estimated SCE emission factors were calculated for the AB 987 application June 2019 submittal, based on the 2017 California Energy Commission (CEC) power content label and 2017 SCE GHG emissions factor of 549 pounds CO2e per MWh; future year GHG intensities were interpolated assuming a linear trajectory toward 100 percent clean electricity by 2045.

	Net Emissions Reductions per Local EVCS					
Year	Fossil Fuel Vehicle VMT to EV Vehicle VMT (MT CO ₂ e)	Fossil Fuel Vehicle VMT Emissions (MT CO ₂ e)	Indirect EVCS Emissions (MT CO ₂ e)	Net Reductions (MT CO ₂ e)		
2021	54,750	14.874631	3.320121	11.554510		
2022	54,750	14.479932	3.266468	11.213464		
2023	54,750	14.081839	3.209660	10.872179		
2024	54,750	13.684775	3.156008	10.528767		
2025	54,750	13.284216	3.102356	10.181860		
2026	54,750	12.928324	3.051860	9.876464		
2027	54,750	12.611463	2.998208	9.613255		
2028	54,750	12.330423	2.944556	9.385867		
2029	54,750	12.080366	2.894059	9.186307		
2030	54,750	11.858617	2.840407	9.018210		
TOTAL	TOTAL 101.430884					

IBEC On-Site Waste Reduction and Diversion Program

The Applicant will implement a waste reduction and diversion program for operations of the IBEC Project, with the exception of the hotel, with a goal of reducing landfill waste to zero. Effectiveness of the program shall be monitored annually through the U.S. EPA's WasteWise program or a similar annual reporting system.⁷

Estimated Results

The GHG reductions estimated for this measure are as follows:

Timeframe	MT CO₂e Reduced
IBEC Operations 2024-2054	31,587

Calculation Methodology

The GHG emissions reductions for the implementation of a waste reduction and landfill diversion program for the proposed IBEC Project are calculated based on the assumption that the program will reduce landfill waste for all uses included in the proposed Project except for the hotel component. The program will have a goal of zero landfill waste. The reductions presented therefore assume elimination of GHG emissions as calculated in the mitigated emissions scenario in the AB 987 Application (IBEC Project Greenhouse Gas Analysis Supplemental Technical Memorandum and Attachment 3, Appendix A). As documented in that submittal, those indirect GHG emissions were calculated using waste generation rates for California arena venues, along with CalEEMod default generation rates for other land uses. The potential GHG emissions reductions that could be achieved through a 100% reduction and diversion rate for all uses except for the hotel were similarly calculated using CalEEMod. ⁸

For purposes of calculating the potential reductions for the IBEC Project waste program, the effectiveness of the program has been adjusted to allow for implementation and modification of the program and to provide conservative estimate of emissions reductions based on waste diversion rates observed for other large sports and entertainment venues, ⁹ using the following assumptions:

Parameter	Assumption
Years of emissions reductions included	2024-2054
Assumed waste reduction and diversion, 2024-2026	80%
Assumed waste reduction and diversion, 2027-2028	85%
Assumed waste reduction and diversion, 2029-2054	90%

⁷ See U.S. Environmental Protection Agency, WasteWise Program, available at: https://www.epa.gov/smm/wastewise#01. Other monitoring and reporting programs or systems include the GBCI TRUE Zero Waste Program, see https://true.gbci.org.

⁸ California Emissions Estimator Model Version 2016.3.2 (CalEEMod), available at: http://www.caleemod.com/.

⁹ Waste reduction and diversion programs at other sports and entertainment venues have achieved diversion rates over 90%, including diversion rates of 95% to 97% at CenturyLink Field in Seattle (see https://www.epa.gov/newsreleases/centurylink-field-seattle-earns-epas-wastewise-award-reducing-waste-saving-resources), 93% to 94% at Ohio Stadium in Columbus (see https://ohiostatebuckeyes.com/zero-waste-at-ohio-stadium/), and 94% at Pauley Pavilion in Los Angeles and 92% at Haas Pavilion in Berkeley (see https://pac-12.com/article/2019/05/20/california-selected-overall-winner-pac-12-zero-waste-challenge-2018-19-basketball).

Waste Program Emissions Reductions				
Year	IBEC Operational Solid Waste Emissions (MT CO ₂ e)	100% Diversion Potential Emissions Reductions (MT CO ₂ e) ¹	Waste Reduction / Diversion	IBEC Waste Program Emissions Reductions (MT CO ₂ e)
2024	603.42	582.78	80%	466.22
2025	1,206.83	1,165.56	80%	932.45
2026	1,206.83	1,165.56	80%	932.45
2027	1,206.83	1,165.56	85%	990.73
2028	1,206.83	1,165.56	85%	990.73
2029	1,206.83	1,165.56	90%	1,049.00
2030	1,206.83	1,165.56	90%	1,049.00
2031	1,206.83	1,165.56	90%	1,049.00
2032	1,206.83	1,165.56	90%	1,049.00
2033	1,206.83	1,165.56	90%	1,049.00
2034	1,206.83	1,165.56	90%	1,049.00
2035	1,206.83	1,165.56	90%	1,049.00
2036	1,206.83	1,165.56	90%	1,049.00
2037	1,206.83	1,165.56	90%	1,049.00
2038	1,206.83	1,165.56	90%	1,049.00
2039	1,206.83	1,165.56	90%	1,049.00
2040	1,206.83	1,165.56	90%	1,049.00
2041	1,206.83	1,165.56	90%	1,049.00
2042	1,206.83	1,165.56	90%	1,049.00
2043	1,206.83	1,165.56	90%	1,049.00
2044	1,206.83	1,165.56	90%	1,049.00
2045	1,206.83	1,165.56	90%	1,049.00
2046	1,206.83	1,165.56	90%	1,049.00
2047	1,206.83	1,165.56	90%	1,049.00
2048	1,206.83	1,165.56	90%	1,049.00
2049	1,206.83	1,165.56	90%	1,049.00
2050	1,206.83	1,165.56	90%	1,049.00
2051	1,206.83	1,165.56	90%	1,049.00
2052	1,206.83	1,165.56	90%	1,049.00
2053	1,206.83	1,165.56	90%	1,049.00
2054	1,206.83	1,165.56	90%	1,049.00
TOTAL REDI	UCTIONS			31,586.65

Notes:

¹ Emissions reductions derived from CalEEMod modeling results with a 96.58% reduction in waste disposed, consistent with a 100% waste diversion/reduction rate for all Project land uses except the hotel (see CalEEMod run output, attached).

IBEC On-Site Electric Vehicle Charging Stations

The Applicant will install a minimum of 330 electric vehicle charging stations (EVCS) within the three on-site parking structures serving the proposed IBEC Project for use by visitors, event attendees, employees, and the public.

Estimated Results

The GHG reductions estimated for this measure are as follows:

Timeframe	MT CO₂e Reduced	
IBEC Project Operations 2024-2054	13,918	

Calculation Methodology

The methodology to calculate GHG emissions reductions for this measure is based on a technical analysis produced by the California Air Resources Board in 2018 to study the effectiveness of EVCS, which includes an estimate of the GHG emissions reduction per EVCS. 10 The emissions reduction estimate methodology and calculations per on-site EVCS are derived from Appendix H, Table H1 of that analysis. Each on-site EVCS is assumed to be operated and maintained for the 30-year operational life of the IBEC Project, consistent with the operational life assumed in the AB 987 Application. Where appropriate, IBEC Project-specific inputs have been incorporated into the methodology, as noted below. Using this methodology, the following assumptions and resulting calculated inputs were used to derive the emissions reductions estimates:

Parameter (italicized values were calculated based on parameters listed above them)	Input	
Years of emissions reductions included	2024 – 2054	
Total EV Charging Stations installed at IBEC	330	
Total annual charge hours of use at IBEC (all EVCSs)	168,034	
BEV mileage per hour of charge	20 ^a	
PHEV mileage per hour of charge	10 ^a	
Calculated average mileage per hour of charge	15 ^b	
Calculated EV miles per EVCS per year, displacing fossil fuel vehicles	7,638	
Fuel Economy of an EV (kWh/mile)	0.25 ^a	
Fuel Economy of an EV (MWh/mile)	0.00025	
Calculated MWh used per EVCS per year 1		
Notes	•	

^a California Air Resources Board, Electric Vehicle (EV) Charging Infrastructure: Multifamily Building Standards, Appendix H: Greenhouse Gas Reduction Estimates, Table H1.

These inputs were used to calculate emissions reductions based on the assumption that the EV chargers would facilitate displacement of vehicle miles traveled by gasoline-fueled passenger vehicles, reducing VMT and associated GHG emissions from such vehicles. Results were derived as follows:

^b Miles per charge estimate based on conservative assumption of 50% Plug-in Hybrid Electric Vehicle (PHEV) and 50% Battery Electric Vehicle (BEV).

¹⁰ California Air Resources Board, *Electric Vehicle (EV) Charging Infrastructure: Multifamily Building Standards, Appendix H:* Greenhouse Gas Reduction Estimates (April 2018), available at: https://ww3.arb.ca.gov/cc/greenbuildings/pdf/tcac2018.pdf.

- (A) Avoided gasoline vehicle emissions for each year were calculated by multiplying the calculated EV miles per EVCS by annual emission factors derived from EMFAC 2017.¹¹
- (B) Indirect emissions associated with EVCS charging use were calculated by multiplying the calculated MWh used per EVCS by annual estimated Southern California Edison emission factors.
- (C) Net emissions reductions were calculated by subtracting the EVCS charging use indirect emissions (B) from the avoided emissions produced by fossil-fueled vehicle emissions for the EV miles per EVCS (A).

IBEC EVCS Utilization ¹								
Parking Structure	EVCS	Event Day Charge Hours per EVCS*	Event Days EVCS in Use	Annual Charge Hours Event Days	Non-Event Day Charge Hours per EVCS**	Non- Event Days EVCS in Use	Annual Charge Hours Non-Event Days	Total Annual Charge Hours
South	52	6	243	75,816	4	122	25,376	101,192
West	249	2	127	63,246	0	-	0	63,246
East	29	2	62	3,596	0	-	0	3,596
IBEC Total	330			142,658			25,376	168,034
Average annual charge hours per EVCS					509			
Miles per charge hour				15				
EV miles per EVCS per year			7,638					

Notes:

¹EVCS utilization assumptions based on the methodology employed in *California Air Resources Board, Electric Vehicle (EV) Charging Infrastructure: Multifamily Building Standards, Appendix H: Greenhouse Gas Reduction Estimates* (April 2018), adjusted to assume 4 hours of EVCS use by employees and ancillary use visitors during non-event periods in the South parking structure, and 2 hours EVCS use during events in all structures utilized for an event.

Parking structure and EVCS utilization based on projected events to be hosted at IBEC as stated in the IBEC Project AB 987 Application; West parking structure utilized during all projected events over 7,500 attendees, East parking structure utilized during all projected events over 14,500 attendees.

11

¹¹ California Air Resources Board, EMFAC2017 Web Database, available at: https://www.arb.ca.gov/emfac/2017/.

CO CU NO					
Year	CO₂ (grams/mile)	CH₄ (grams/mile)	N₂O (grams/mile)	MT CO₂e / mil	
2024	249.204639	0.002223	0.003996	0.000250	
2025	241.943303	0.001984	0.003783	0.000243	
2026	235.484857	0.001788	0.003616	0.000236	
2027	229.729586	0.001626	0.003482	0.000230	
2028	224.621022	0.001490	0.003377	0.000225	
2029	220.072932	0.001374	0.003291	0.000221	
2030	216.037270	0.001274	0.003224	0.000216	
2031	212.501747	0.001188	0.003170	0.000213	
2032	209.361117	0.001113	0.003126	0.000210	
2033	206.612987	0.001048	0.003092	0.000207	
2034	204.218929	0.000991	0.003065	0.000205	
2035	202.150383	0.000939	0.003042	0.000203	
2036	200.379193	0.000894	0.003025	0.000201	
2037	198.882561	0.000856	0.003012	0.000199	
2038	197.629716	0.000824	0.003002	0.000198	
2039	196.591155	0.000796	0.002994	0.000197	
2040	195.737668	0.000771	0.002988	0.000196	
2041	195.047960	0.000750	0.002983	0.000195	
2042	194.493749	0.000734	0.002979	0.000195	
2043	194.054473	0.000721	0.002976	0.000194	
2044	193.709337	0.000712	0.002975	0.000194	
2045	193.436791	0.000707	0.002975	0.000194	
2046	193.224733	0.000703	0.002974	0.000194	
2047	193.058935	0.000699	0.002974	0.000193	
2048	192.927845	0.000697	0.002973	0.000193	
2049	192.823939	0.000695	0.002973	0.000193	
2050	192.740525	0.000694	0.002973	0.000193	
2051	192.740525	0.000694	0.002973	0.000193	
2052	192.740525	0.000694	0.002973	0.000193	
2053	192.740525	0.000694	0.002973	0.000193	
2054	192.740525	0.000694	0.002973	0.000193	

Notes:

Emission factors derived from EMFAC 2017 (LDA vehicle class, 30 mph, RUNEX emissions factors, South Coast Air Basin, Aggregate)

EVCS Emissions Factors Emissions per MWh		
Year	MTCO ₂ e / MWh	
2024	0.230576	
2025	0.226656	
2026	0.222967	
2027	0.219047	
2028	0.215127	
2029	0.211438	
2030	0.207518	
2031	0.193684	
2032	0.179849	
2033	0.166015	
2034	0.152180	
2035	0.138346	
2036	0.124511	
2037	0.110676	
2038	0.096842	
2039	0.083007	
2040	0.069173	
2041	0.055338	
2042	0.041504	
2043	0.027669	
2044	0.013835	
2045	-	
2046	-	
2047	-	
2048	-	
2049	-	
2050	-	
2051	-	
2052	-	
2053	-	
2054	-	
	l	

Notes.

Estimated SCE emission factors were calculated for the AB 987 application June 2019 submittal, based on the 2017 California Energy Commission (CEC) power content label and 2017 SCE GHG emissions factor of 549 pounds CO2e per MWh; future year GHG intensities were interpolated assuming a linear trajectory toward 100 percent clean electricity by 2045.

	Net Emissions Reductions per EVCS				
Year	Fossil Fuel VMT Emissions (MT CO ₂ e)	Indirect EVCS Emissions (MT CO ₂ e)	Net Reductions (MT CO ₂ e)		
2024	0.954549	0.220140	0.734409		
2025	1.853217	0.432795	1.420422		
2026	1.803568	0.425750	1.377818		
2027	1.759365	0.418266	1.341099		
2028	1.720158	0.410781	1.309377		
2029	1.685274	0.403736	1.281537		
2030	1.654339	0.396252	1.258087		
2031	1.627249	0.369835	1.257415		
2032	1.603197	0.343418	1.259779		
2033	1.582159	0.317001	1.265158		
2034	1.563837	0.290584	1.273253		
2035	1.548008	0.264168	1.283841		
2036	1.534458	0.237751	1.296707		
2037	1.523014	0.211334	1.311680		
2038	1.513435	0.184917	1.328518		
2039	1.505496	0.158501	1.346995		
2040	1.498970	0.132084	1.366886		
2041	1.493698	0.105667	1.388031		
2042	1.489461	0.079250	1.410211		
2043	1.486104	0.052834	1.433271		
2044	1.483469	0.026417	1.457052		
2045	1.481390	0.000000	1.481390		
2046	1.479771	0.000000	1.479771		
2047	1.478506	0.000000	1.478506		
2048	1.477504	0.000000	1.477504		
2049	1.476712	0.000000	1.476712		
2050	1.476076	0.000000	1.476076		
2051	1.476076	0.000000	1.476076		
2052	1.476076	0.000000	1.476076		
2053	1.476076	0.000000	1.476076		
2054	1.476076	0.000000	1.476076		
TOTAL			42.175808		

IBEC On-Site Smart Parking

The Applicant shall install systems in the on-site parking structures serving the proposed IBEC Project to reduce vehicle circulation and idle time within the structures by more efficiently directing vehicles to available parking spaces.

Estimated GHG Emissions Reduction Results

The GHG reductions estimated for this measure are as follows:

Timeframe and Scope	MT CO₂e Reduced
2024-2054 emissions reductions from all IBEC garages	1,480

Assumptions

Parameter	Assumption		
	Parking Structure	Self-Park Spaces	
Solf Park Spaces	West	3,110	
Self-Park Spaces	South	650	
	East	365	
Time saved	Varies based on parking structure size:		
Time saveu	Ranges from 0.5 to 3 minutes		
Expected garage utilization rate	Varies by event type		
Vehicle speed while parking	5 miles	per hours	

Calculation Methodology

Based on these assumptions, emissions reductions were calculated by determining the amount of circulation and idling time saved by usage of the smart parking systems in the IBEC Project parking structures and calculating the associated emissions reductions, using emissions factors obtained from EMFAC 2017¹² for the years 2024 to 2054, using the inputs of light duty auto (LDA) vehicle class, operating at 5 miles per hour and converted to grams/minute using travel speed and emission factor.

-

¹² California Air Resources Board, EMFAC2017 Web Database, *available at:* https://www.arb.ca.gov/emfac/2017/. To provide a conservative emission reduction estimate, emission factors were computed for each year with decreasing emission factors for each new year due to assumed upgrades in vehicle fleets.

IBEC Parking Structure Utilization							
	We	est Parking Str	uctı	ure (Event Parking)		
Capacity							
Self-Park Spaces Total	3,110						
Utili	zation			Minutes	Year Saved	from Smart Pa	arking
Event Type	Annual Occurrence	Garage Utilization per Event Type		Parking Spaces Utilized/Year	Average Time Savings	Minutes Saved per Event Type	Total Minutes Saved All Events
NBA Games Large Concert Medium Concert	62	100%		192,820	3	578,460	
Small Concert Family Show	30	90%		83,970	2	167,940	971,564
Other Events	35	80%		87,080	2	174,160	, , , ,
Plaza Events	16	40%		19,904	1	19,904	
Corporate/ Community Events	100	20%		62,200	0.5	31,100	
	Ea	st Parking Str	ıctu	ıre (Event Parking)		
Capacity							
	I						
Self-Park Spaces Total	365		1				
·	365 zation				Minutes/Y	′ear Saved	
·		Garage Utilization per Event Type		Parking Spaces Utilized/Year	Minutes/Y Average Time Savings	Minutes Saved Per Event Type	Total Minutes Saved All Events
Utilii	zation Annual	Utilization per Event			Average Time	Minutes Saved Per	Minutes Saved All
Utilia Event Type NBA Games Large Concert Medium Concert	Annual Occurrence	Utilization per Event Type	ploy	Utilized/Year	Average Time Savings	Minutes Saved Per Event Type	Minutes Saved All Events
Utilia Event Type NBA Games Large Concert Medium Concert	Annual Occurrence	Utilization per Event Type	ploy	Utilized/Year 22,630	Average Time Savings	Minutes Saved Per Event Type	Minutes Saved All Events
Utilia Event Type NBA Games Large Concert Medium Concert South Capacity Self-Park Spaces Total	Annual Occurrence 62 Parking Structu	Utilization per Event Type	ploy	Utilized/Year 22,630	Average Time Savings 0.5	Minutes Saved Per Event Type 11,315 Parking)	Minutes Saved All Events
Utilia Event Type NBA Games Large Concert Medium Concert South Capacity Self-Park Spaces Total	Annual Occurrence 62 Parking Structu	Utilization per Event Type	ploy	Utilized/Year 22,630	Average Time Savings 0.5	Minutes Saved Per Event Type	Minutes Saved All Events 11,315
Utilia Event Type NBA Games Large Concert Medium Concert South Capacity Self-Park Spaces Total	Annual Occurrence 62 Parking Structu	Utilization per Event Type	ploy	Utilized/Year 22,630	Average Time Savings 0.5	Minutes Saved Per Event Type 11,315 Parking)	Minutes Saved All Events
NBA Games Large Concert Medium Concert South Capacity Self-Park Spaces Total Utilis	Annual Occurrence 62 Parking Structu 650 zation	Utilization per Event Type 100% Ire (Event, Em	oloy	Utilized/Year 22,630 ree, and Ancillary Parking Spaces	Average Time Savings 0.5 Use Visitor Minutes/Y Average Time	Minutes Saved Per Event Type 11,315 Parking) Year Saved Minutes Saved Per	Minutes Saved All Events 11,315 Total Minutes Saved All

Emission Factors						
VEAD		gra	ams/mi*		grams/hr**	grams/min
YEAR	CO ₂	CH₄	N ₂ O	CO ₂ e***	CO₂e	CO ₂ e
2024	593.516741	0.012850	0.006881	595.888628	2,979.4431	49.657386
2025	576.206751	0.011485	0.006511	578.434020	2,892.1701	48.202835
2026	560.828584	0.010369	0.006218	562.940663	2,814.7033	46.911722
2027	547.139161	0.009442	0.005985	549.158817	2,745.7941	45.763235
2028	534.995460	0.008668	0.005801	536.940730	2,684.7036	44.745061
2029	524.187891	0.008008	0.005650	526.071816	2,630.3591	43.839318
2030	514.600272	0.007441	0.005531	516.434445	2,582.1722	43.036204
2031	506.367491	0.006969	0.005436	508.161639	2,540.8082	42.346803
2032	498.898068	0.006539	0.005359	500.658474	2,503.2924	41.721539
2033	492.362175	0.006165	0.005298	494.095122	2,470.4756	41.174594
2034	486.668912	0.005832	0.005249	488.378902	2,441.8945	40.698242
2035	481.750950	0.005535	0.005209	483.441486	2,417.2074	40.286790
2036	477.540815	0.005275	0.005177	479.215315	2,396.0766	39.934610
2037	473.983724	0.005057	0.005153	475.645849	2,378.2292	39.637154
2038	471.006662	0.004870	0.005135	472.658748	2,363.2937	39.388229
2039	468.539301	0.004707	0.005122	470.183215	2,350.9161	39.181935
2040	466.511827	0.004562	0.005110	468.148624	2,340.7431	39.012385
2041	464.873494	0.004441	0.005101	466.504614	2,332.5231	38.875384
2042	463.556703	0.004342	0.005094	465.183299	2,325.9165	38.765275
2043	462.512494	0.004269	0.005089	464.135859	2,320.6793	38.677988
2044	432.496262	0.003951	0.004765	434.015079	2,170.0754	36.167923
2045	432.554129	0.003927	0.004772	434.074340	2,170.3717	36.172862
2046	432.688279	0.003908	0.004778	434.209790	2,171.0490	36.184149
2047	432.911477	0.003894	0.004783	434.434289	2,172.1714	36.202857
2048	433.174165	0.003884	0.004788	434.698177	2,173.4909	36.224848
2049	433.437440	0.003879	0.004794	434.962966	2,174.8148	36.246914
2050	433.698752	0.003876	0.004798	435.225578	2,176.1279	36.268798
2051	433.698752	0.003876	0.004798	435.225578	2,176.1279	36.268798
2052	433.698752	0.003876	0.004798	435.225578	2,176.1279	36.268798
2053	433.698752	0.003876	0.004798	435.225578	2,176.1279	36.268798
2054	433.698752	0.003876	0.004798	435.225578	2,176.1279	36.268798

Notes:

^{*}EMFAC 2017 (LDA vehicle class, 5 mph, RUNEX emissions factors, South Coast Air Basin, Aggregate)

^{**}Derived based on one hour of run time at 5 mph (g/mi * mi/hr = g/hr)

^{***}Derived from carbon dioxide, methane, and nitrous oxide with GWPs of 1, 25, and 298, respectively.

Smart Parking Emissions Reductions						
YEAR	Emissions Factor grams/min CO₂e	Minutes Saved Per Year	Emissions Reductions MT/yr* CO ₂ e			
2024	49.657386	610,065	30.233620			
2025	48.202835	1,220,129	58.696050			
2026	46.911722	1,220,129	57.123876			
2027	45.763235	1,220,129	55.725376			
2028	44.745061	1,220,129	54.485557			
2029	43.839318	1,220,129	53.382644			
2030	43.036204	1,220,129	52.404701			
2031	42.346803	1,220,129	51.565226			
2032	41.721539	1,220,129	50.803849			
2033	41.174594	1,220,129	50.137839			
2034	40.698242	1,220,129	49.557791			
2035	40.286790	1,220,129	49.056771			
2036	39.934610	1,220,129	48.627925			
2037	39.637154	1,220,129	48.265716			
2038	39.388229	1,220,129	47.962603			
2039	39.181935	1,220,129	47.711401			
2040	39.012385	1,220,129	47.504942			
2041	38.875384	1,220,129	47.338118			
2042	38.765275	1,220,129	47.204039			
2043	38.677988	1,220,129	47.097751			
2044	36.167923	1,220,129	44.041273			
2045	36.172862	1,220,129	44.047286			
2046	36.184149	1,220,129	44.061031			
2047	36.202857	1,220,129	44.083812			
2048	36.224848	1,220,129	44.110590			
2049	36.246914	1,220,129	44.137459			
2050	36.268798	1,220,129	44.164107			
2051	36.268798	1,220,129	44.164107			
2052	36.268798	1,220,129	44.164107			
2053	36.268798	1,220,129	44.164107			
2054	36.268798	1,220,129	44.164107			
TOTAL			1,480.1878			

Notes:

*Conversion factor grams/year to metric tons/year = 0.000000998

IBEC On-site Use of Renewable Energy

The Applicant could use 100% renewable electricity to displace use of electricity provided by Southern California Edison that is derived from a mix of fossil and renewable energy sources, and use renewable natural gas (RNG) to displace the use of traditional, non-renewable natural gas.

Estimated Results

The GHG reductions estimated for this measure are as follows:

Timeframe	Source	MT CO₂e Reduced
IBEC Project Operations 2024-2054	Green Power	52,889
IBEC Project Operations 2024-2054	Renewable Natural Gas	30,827

GHG Emissions Reductions Calculation – Renewable Electrical Power

The emissions reductions for green power are calculated on the assumption that if the proposed Project used 100% renewable electricity, all GHG emissions from IBEC electricity usage would be eliminated. The reductions presented, therefore, are from 100 percent elimination of the mitigated emissions scenario from the AB 987 Application. As documented in the Application, those electricity emissions were calculated as follows:

- Southern California Edison annual emission factors were estimated based on the 2017 California Energy Commission power content label¹³ and the 2017 SCE GHG emissions factor.¹⁴
- Future year GHG intensities were interpolated for 2024 through 2054 assuming a linear trajectory toward 100 percent clean electricity by 2045, based on Southern California Edison meeting California's Renewable Portfolio Standard¹⁵ phased requirements.
- These estimated emission factors for each year were entered into CalEEMod,¹⁶ and multiplied by the project's annual electricity consumption, to derive the emissions results for each year.

The emissions reductions for renewable natural gas are calculated on the assumption that the proposed Project's use of 100% renewable natural gas will eliminate all anthropogenic CO_2 emissions from Project's natural gas usage. Emissions of CH_4 and N_2O from renewable natural gas are considered anthropogenic,¹⁷ and so only CO_2 emissions reductions are accounted from displacement of the fossil-derived natural gas. The reductions presented, therefore, are from 100 percent elimination of the mitigated emissions scenario's CO_2 emissions from the AB 987 Application.

¹³ California Energy Commission, *Southern California Edison Power Content Label* (2017), *available at:* https://ww2.energy.ca.gov/pcl/labels/2017 labels/SCE 2017 PCL.pdf.

¹⁴ Edison International, *Edison International Sustainability Report* (2017), *available at:* https://www.edison.com/content/dam/eix/documents/sustainability/eix-2017-sustainability-report.pdf.

¹⁵ California Public Utilities Commission, Renewable Portfolio Standards Program, available at: https://www.cpuc.ca.gov/rps/.

¹⁶ California Emissions Estimator Model Version 2016.3.2 (CalEEMod), available at: http://www.caleemod.com/.

¹⁷ WRI/WBCSD Calculation Tool for Direct Emissions from Stationary Combustion (2005), *available at:* https://ghqprotocol.org/sites/default/files/Stationary Combustion Guidance final 1.pdf.

Year 1 2024 2025 2026	Green Power Potential Reduction Per Year MTCO ₂ e 2,124.23 4,176.26 4,105.73	Renewable Natural Gas Potential Reduction Per Year MTCO₂e 505
2025	2,124.23 4,176.26	505
2025	4,176.26	
2026	4,105.73	1,011
		1,011
2027	4,035.21	1,011
2028	3,964.69	1,011
2029	3,894.17	1,011
2030	3,823.64	1,011
2031	3,568.73	1,011
2032	3,313.83	1,011
2033	3,058.92	1,011
2034	2,804.01	1,011
2035	2,549.10	1,011
2036	2,294.19	1,011
2037	2,039.28	1,011
2038	1,784.37	1,011
2039	1,529.46	1,011
2040	1,274.55	1,011
2041	1,019.64	1,011
2042	764.73	1,011
2043	509.82	1,011
2044	254.91	1,011
2045	0	1,011
2046	0	1,011
2047	0	1,011
2048	0	1,011
2049	0	1,011
2050	0	1,011
2051	0	1,011
2052	0	1,011
2053	0	1,011
2054	0	1,011
Total	52,889	30,827

IBEC Operations - Maximum Attendees - Los Angeles-South Coast County, Annual

IBEC Operations - Maximum Attendees

Los Angeles-South Coast County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	71.00	1000sqft	1.50	71,000.00	0
Government (Civic Center)	15.00	1000sqft	0.50	15,000.00	0
Medical Office Building	25.00	1000sqft	0.50	25,000.00	0
Other Non-Asphalt Surfaces	83.90	1000sqft	1.93	83,903.00	0
Unenclosed Parking Structure	650.00	Space	0.00	214,500.00	0
Unenclosed Parking Structure	3,110.00	Space	4.00	1,063,435.00	0
Unenclosed Parking Structure	590.00	Space	3.35	137,000.00	0
Arena	915.00	1000sqft	7.60	915,000.00	0
Fast Food Restaurant w/o Drive Thru	9.00	1000sqft	1.00	9,000.00	0
Health Club	85.00	1000sqft	1.00	85,000.00	0
Hotel	150.00	Room	5.00	217,800.00	0
Quality Restaurant	15.00	1000sqft	1.00	15,000.00	0
Strip Mall	24.00	1000sqft	1.00	24,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	8			Operational Year	2024
Utility Company	Southern California Edisor	n			
CO2 Intensity (lb/MWhr)	508.33	CH4 Intensity (lb/MWhr)	0	N2O Intensity (lb/MWhr)	0

IBEC Operations - Maximum Attendees - Los Angeles-South Coast County, Annual

1.3 User Entered Comments & Non-Default Data

Project Characteristics - IBEC operations run. CO2e intensity rate adjusted per RPS mandates based on 2017 SCE Sustainability Report.

Land Use - Project specific land uses provided in programming details.

Construction Phase - Operational run only.

Off-road Equipment - Operational run only.

Off-road Equipment - Operational run only.

Trips and VMT - Operational run only.

Architectural Coating - Operational run only.

Vehicle Trips - Mobile sources calculated separately.

Energy Use - Energy consumption from ancillary land uses included within arena land use based on Concept Design white box energy model. Default energy consumption rates used for parking structures and hotel.

Water And Wastewater - Based on Stetson Water Demand Analysis. Outdoor water use combined in Arena total. Cooling tower water demand calculated separately.

Solid Waste - Arena solid waste factor based on factor used in Sacramento Entertainment and Sports Center EIR, 2013. Retail and office solid waste generation factor consistent with GSW NOP. Default rates for remaining ancillary land uses.

Energy Mitigation - GHG emissions reductions achieved through LEED features of the following: 1,085,000 kWhr/year and 10% improvement over Title 24 per CalGreen Code Tier 1.

Water Mitigation - EED features of the following: 51% water conservation of outdoor usage and 41% of indoor usage per Stetson Water Demand Analysis.

Stationary Sources - Emergency Generators and Fire Pumps - Emergency Generators and Fire Pumps - 1 2,500 kW emergency generator based on concept design. Assumes 50 hours per year for maintenance and testing based on Concept Design.

Waste Mitigation - A 96.58% reduction in waste disposed consistent with a Zero Waste Plan for all land uses except the hotel.

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	ConstArea_Nonresidential_Exterior	688,400.00	0.00
tblArchitecturalCoating	ConstArea_Nonresidential_Interior	2,065,200.00	0.00
tblArchitecturalCoating	ConstArea_Parking	89,930.00	0.00
tblConstructionPhase	NumDays	35.00	1.00
tblConstructionPhase	NumDays	20.00	1.00
tblEnergyUse	LightingElect	2.99	5.96

IBEC Operations - Maximum Attendees - Los Angeles-South Coast County, Annual

tblEnergyUse	LightingElect	7.66	0.00
tblEnergyUse	LightingElect	4.34	0.00
tblEnergyUse	LightingElect	4.34	0.00
tblEnergyUse	LightingElect	2.99	0.00
tblEnergyUse	LightingElect	4.34	0.00
tblEnergyUse	LightingElect	7.66	0.00
tblEnergyUse	LightingElect	5.71	0.00
tblEnergyUse	NT24E	3.83	7.64
tblEnergyUse	NT24E	20.11	0.00
tblEnergyUse	NT24E	4.94	0.00
tblEnergyUse	NT24E	4.94	0.00
tblEnergyUse	NT24E	3.83	0.00
tblEnergyUse	NT24E	4.94	0.00
tblEnergyUse	NT24E	20.11	0.00
tblEnergyUse	NT24E	2.80	0.00
tblEnergyUse	NT24NG	6.86	4.66
tblEnergyUse	NT24NG	180.76	0.00
tblEnergyUse	NT24NG	0.55	0.00
tblEnergyUse	NT24NG	0.55	0.00
tblEnergyUse	NT24NG	6.86	0.00
tblEnergyUse	NT24NG	0.55	0.00
tblEnergyUse	NT24NG	180.76	0.00
tblEnergyUse	NT24NG	1.05	0.00
tblEnergyUse	T24E	1.63	3.25
tblEnergyUse	T24E	8.71	0.00
tblEnergyUse	T24E	4.71	0.00
tblEnergyUse	T24E	4.71	0.00

IBEC Operations - Maximum Attendees - Los Angeles-South Coast County, Annual

tblEnergyUse	T24E	1.63	0.00	
tblEnergyUse	T24E	4.71	0.00	
tblEnergyUse	T24E	8.71	0.00	
tblEnergyUse	T24E	2.93	0.00	
tblEnergyUse	T24NG	14.04	9.53	
tblEnergyUse	T24NG	78.56	0.00	
tblEnergyUse	T24NG	8.59	0.00	
tblEnergyUse	T24NG	8.59	0.00	
tblEnergyUse	T24NG	14.04	0.00	
tblEnergyUse	T24NG	8.59	0.00	
tblEnergyUse	T24NG	78.56	0.00	
tblEnergyUse	T24NG	0.95	0.00	
tblLandUse	LandUseSquareFeet	83,900.00	83,903.00	
tblLandUse	LandUseSquareFeet	1,244,000.00	1,063,435.00	
tblLandUse	LandUseSquareFeet	236,000.00	137,000.00	
tblLandUse	LandUseSquareFeet	260,000.00	214,500.00	
tblLandUse	LotAcreage	1.63	1.50	
tblLandUse	LotAcreage	0.34	0.50	
tblLandUse	LotAcreage	0.57	0.50	
tblLandUse	LotAcreage	27.99	4.00	
tblLandUse	LotAcreage	5.31	3.35	
tblLandUse	LotAcreage	5.85	0.00	
tblLandUse	LotAcreage	294.11	7.60	
tblLandUse	LotAcreage	0.21 1.00		
tblLandUse	LotAcreage	1.95 1.00		
tblLandUse	LotAcreage	0.34	1.00	
tblLandUse	LotAcreage	0.55	1.00	

IBEC Operations - Maximum Attendees - Los Angeles-South Coast County, Annual

tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblProjectCharacteristics	CH4IntensityFactor	0.029	0
tblProjectCharacteristics	CO2IntensityFactor	702.44	508.33
tblProjectCharacteristics	N2OIntensityFactor	0.006	0
tblSolidWaste	SolidWasteGenerationRate	25.18	1,180.35
tblSolidWaste	SolidWasteGenerationRate	66.03	92.30
tblSolidWaste	SolidWasteGenerationRate	25.20	87.60
tblTripsAndVMT	WorkerTripNumber	239.00	0.00
tblVehicleTrips	ST_TR	10.71	0.00
tblVehicleTrips	ST_TR	696.00	0.00
tblVehicleTrips	ST_TR	2.46	0.00
tblVehicleTrips	ST_TR	20.87	0.00
tblVehicleTrips	ST_TR	8.19	0.00
tblVehicleTrips	ST_TR	8.96	0.00
tblVehicleTrips	ST_TR	94.36	0.00
tblVehicleTrips	ST_TR	42.04	0.00
tblVehicleTrips	SU_TR	10.71	0.00
tblVehicleTrips	SU_TR	500.00	0.00
tblVehicleTrips	SU_TR	1.05	0.00
tblVehicleTrips	SU_TR	26.73	0.00
tblVehicleTrips	SU_TR	5.95	0.00
tblVehicleTrips	SU_TR	1.55	0.00

IBEC Operations - Maximum Attendees - Los Angeles-South Coast County, Annual

tblVehicleTrips	SU_TR	72.16	0.00	
tblVehicleTrips	SU_TR	20.43	0.00	
tblVehicleTrips	WD_TR 10.71		0.00	
tblVehicleTrips	WD_TR	716.00	0.00	
tblVehicleTrips	WD_TR	11.03	0.00	
tblVehicleTrips	WD_TR	27.92	0.00	
tblVehicleTrips	WD_TR	32.93	0.00	
tblVehicleTrips	WD_TR	8.17	0.00	
tblVehicleTrips	WD_TR	36.13	0.00	
tblVehicleTrips	WD_TR	89.95	0.00	
tblVehicleTrips	WD_TR	WD_TR 44.32		
tblWater	IndoorWaterUseRate 394,154,657.60		7,623,400.00	
tblWater	IndoorWaterUseRate 2,731,803.41		0.00	
tblWater	IndoorWaterUseRate	12,619,096.11	2,857,100.00	
tblWater	IndoorWaterUseRate	2,979,895.29	0.00	
tblWater	IndoorWaterUseRate	5,027,167.24	0.00	
tblWater	IndoorWaterUseRate	3,805,015.50	6,843,800.00	
tblWater	IndoorWaterUseRate	3,137,013.44	0.00	
tblWater	IndoorWaterUseRate	IndoorWaterUseRate 4,553,005.69		
tblWater	IndoorWaterUseRate 1,777,740.52		2,645,500.00	
tblWater	OutdoorWaterUseRate 25,158,807.93		4,888,465.00	
tblWater	OutdoorWaterUseRate 174,370.43		0.00	
tblWater	OutdoorWaterUseRate 7,734,284.71		0.00	
tblWater	OutdoorWaterUseRate	1,826,387.43	0.00	
tblWater	OutdoorWaterUseRate	3,081,167.02	0.00	
tblWater	OutdoorWaterUseRate	OutdoorWaterUseRate 422,779.50 0.00		
tblWater	OutdoorWaterUseRate	597,526.37	0.00	
ıbivvater	tdivvater OutdoorvvaterUseRate		U.UU	

CalEEMod Version: CalEEMod.2016.3.2

IBEC Operations - Maximum Attendees - Los Angeles-South Coast County, Annual

tblWater	OutdoorWaterUseRate	290,617.38	0.00	
tblWater	OutdoorWaterUseRate	1,089,582.90	0.00	

2.0 Emissions Summary

IBEC Operations - Maximum Attendees - Los Angeles-South Coast County, Annual

8.2 Waste by Land Use Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons	MT/yr			
Arena	40.368	8.1943	0.4843	0.0000	20.3011
Fast Food Restaurant w/o Drive Thru	3.54551	0.7197	0.0425	0.0000	1.7830
General Office Building	3.15666	0.6408	0.0379	0.0000	1.5875
Government (Civic Center)	2.9241	0.5936	0.0351	0.0000	1.4705
Health Club	16.5699	3.3635	0.1988	0.0000	8.3330
Hotel	2.80885	0.5702	0.0337	0.0000	1.4126
Medical Office Building	9.234	1.8744	0.1108	0.0000	4.6438
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Quality Restaurant	0.468198	0.0950	5.6200e- 003	0.0000	0.2355
Strip Mall	2.99592	0.6081	0.0359	0.0000	1.5067
Unenclosed Parking Structure	0	0.0000	0.0000	0.0000	0.0000
Total		16.6597	0.9846	0.0000	41.2737